FIND THE SURFACE AREA OF THE OBJECT OBTAINED BY ROTATING Y=4+3x2 , 1<=x<=2 ABOUT THE Y-AXIS
S u r f a c e Surface S u r f a ce Integral = 2 π ∫ 1 2 x 1 + [ f ′ ( x ) ] 2 d x 2\pi \int_{1}^{2} x \sqrt{1 + [f'(x)]^2}dx 2 π ∫ 1 2 x 1 + [ f ′ ( x ) ] 2 d x
f ( x ) = y = 4 + 3 x 2 f(x) = y=4 + 3x^2 f ( x ) = y = 4 + 3 x 2
f ′ ( x ) = 6 x f'(x)=6x f ′ ( x ) = 6 x
Surface Area = 2 π ∫ 1 2 x 1 + ( 6 x ) 2 d x 2\pi \int_{1}^{2} x \sqrt{1 + (6x)^2}dx 2 π ∫ 1 2 x 1 + ( 6 x ) 2 d x
2 π ∫ 1 2 x 1 + 36 x 2 d x 2\pi \int_{1}^{2} x \sqrt{1 + 36x^2}dx 2 π ∫ 1 2 x 1 + 36 x 2 d x
let u = 1 + 36 x 2 1 + 36x^2 1 + 36 x 2 , d u d x = 72 x {du \over dx} = 72x d x d u = 72 x , d x = d u 72 x dx = {du \over 72x} d x = 72 x d u
Surface Area = 2 π ∫ 1 2 x 72 x u d u =2\pi \int_{1}^{2} {x \over 72x} \sqrt{u}du = 2 π ∫ 1 2 72 x x u d u
= 2 π 72 ∫ 1 2 u d u ={2\pi \over 72} \int_{1}^{2} \sqrt{u}du = 72 2 π ∫ 1 2 u d u
= π 36 . 2 u 3 3 ∣ 1 2 ={\pi \over 36} .{2\sqrt{u}^3 \over 3} |_{1}^{2} = 36 π . 3 2 u 3 ∣ 1 2
= π u 3 54 ∣ 1 2 = {\pi\sqrt{u}^3 \over54} |_{1}^{2} = 54 π u 3 ∣ 1 2
= π ( 1 + 36 x 2 ) 3 54 ∣ 1 2 = {\pi(\sqrt{1 + 36x^2})^3 \over54} |_{1}^{2} = 54 π ( 1 + 36 x 2 ) 3 ∣ 1 2
= [ π ( 1 + 36 ( 2 ) 2 ) 3 54 ] − [ π ( 1 + 36 ( 1 ) 2 ) 3 54 ] =[ {\pi(\sqrt{1 + 36(2)^2})^3 \over54}] - [{\pi(\sqrt{1 + 36(1)^2})^3 \over54} ] = [ 54 π ( 1 + 36 ( 2 ) 2 ) 3 ] − [ 54 π ( 1 + 36 ( 1 ) 2 ) 3 ]
= [ π ( 145 ) 3 54 ] − [ π ( 37 ) 3 54 ] =[ {\pi(\sqrt{145})^3 \over54}] - [{\pi(\sqrt{37})^3 \over54} ] = [ 54 π ( 145 ) 3 ] − [ 54 π ( 37 ) 3 ]
= π 54 [ ( 145 ) 3 − ( 37 ) 3 ] = {\pi \over54} [ \sqrt{(145)^3}-{\sqrt{(37)^3 }}] = 54 π [ ( 145 ) 3 − ( 37 ) 3 ]
Surface Area = π 54 [ 145 145 − 37 37 ] = {\pi \over54} [145 \sqrt{145}-37{\sqrt{37 }}] = 54 π [ 145 145 − 37 37 ]
Comments