Question #154584

A closed box, whose length in twice its width, is to have a surface area of 192 square inches. Find the dimensions of the box when the volume is maximum?


1
Expert's answer
2021-01-11T18:03:58-0500

Let l,w,hl,w,h be the dimensions of the closed box.

Given: l=2wl=2w and Surface area =192=192 square inches.

2lw+2wh+2lh=192\Rightarrow 2lw+2wh+2lh=192

lw+wh+lh=96\Rightarrow lw+wh+lh=96

2w2+wh+2wh=96\Rightarrow2w^2+wh+2wh=96

2w2+3wh=96\Rightarrow2w^2+3wh=96

h=962w23w\Rightarrow h=\frac{96-2w^2}{3w} ... (1)

Now volume of the box is V=lwhV=lwh

V=(lw)962w23w\Rightarrow V=(lw)\frac{96-2w^2}{3w} ( from (1) )

V=96l2lw23\Rightarrow V=\frac{96l-2lw^2}{3}

Let f(l,w)=96l2lw23f(l,w)=\frac{96l-2lw^2}{3}

Find the first order partial derivatives of the above function.

f(l,w)=96l2lw23fl=962w23f(l,w)=\frac{96l-2lw^2}{3}\Rightarrow f_{l}=\frac{96-2w^2}{3} and fw=04lw3f_{w}=\frac{0-4lw}{3}

fl=962w23\Rightarrow f_{l}=\frac{96-2w^2}{3} and fw=4lw3f_{w}=\frac{-4lw}{3}

For maximum volume, set fl=0f_{l}=0 and fw=0f_{w}=0

962w23=0\Rightarrow \frac{96-2w^2}{3}=0 and 4lw3=0\frac{-4lw}{3}=0

2w2=96\Rightarrow 2w^2=96 and l=0l=0 or w=0w=0

w2=48\Rightarrow w^2=48 ( since l0,w0l\neq 0,w\neq 0 )

w=43\Rightarrow w=4\sqrt{3}

Substituting w=43w=4\sqrt{3} in equation (1), we get h=0h=0

And w=43l=83w=4\sqrt{3}\Rightarrow l=8\sqrt{3}

Therefore, dimensions of the closed box are: l=83l=8\sqrt{3} inches and w=43w=4{\sqrt{3}} inches



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS