If the length of the hypotenuse of a right triangle is 10, find the length of the other sides when the area is maximum.
Given, hypotenuse = 10 units.
Let Base be b units.
And perpendicular be p units.
Then by pythagoras theorem,
"perpendicular^2+base^2=hypotenuse^2"
"p^2+b^2=10^2\n\\\\ \\Rightarrow p^2+b^2=100"
"\\Rightarrow p=\\sqrt{100-b^2}" ...(i)
Now, area of right triangle "=\\frac12 \\times base \\times height=\\frac12 \\times p \\times b"
"A = \\frac12p b" ...(ii)
Putting value from (i) into (ii),
"A=\\frac12 b\\sqrt{100-b^2}"
On differentiating w.r.t b,
"\\frac{dA}{db}=\\frac12 [(b)'\\sqrt{100-b^2}+b(\\sqrt{100-b^2})'] \n\\\\=\\frac12 [(1)\\sqrt{100-b^2}+b\\times \\frac{1}{2\\sqrt{100-b^2}}\\times(0-2b)]\n\\\\=\\frac12 [\\sqrt{100-b^2}- \\frac{b^2}{\\sqrt{100-b^2}}]" ...(iii)
Now, put "\\frac{dA}{db}=0"
"\\frac12 [\\sqrt{100-b^2}- \\frac{b^2}{\\sqrt{100-b^2}}]=0\n\\\\ \\Rightarrow \\sqrt{100-b^2}- \\frac{b^2}{\\sqrt{100-b^2}}=0\n\\\\ \\Rightarrow \\sqrt{100-b^2}=\\frac{b^2}{\\sqrt{100-b^2}}\n\\\\ \\Rightarrow \\sqrt{100-b^2} \\times \\sqrt{100-b^2}=b^2\n\\\\ \\Rightarrow (100-b^2)=b^2\n\\\\ \\Rightarrow 100=2b^2\n\\\\ \\Rightarrow b^2=50\n\\\\ \\Rightarrow b=\\sqrt{50}=5\\sqrt{2}" ....(iv)
Consider (iii)
"\\frac{dA}{db}=\\frac12 [\\frac{(100-b^2)-b^2}{\\sqrt{100-b^2}}]=\\frac12 [\\frac{100-2b^2}{\\sqrt{100-b^2}}]"
"\\Rightarrow \\frac{dA}{db}=\\frac{50-b^2}{\\sqrt{100-b^2}}"
Again differentiating w.r.t b,
"\\frac{d^2A}{db^2}=\\frac{(\\sqrt{100-b^2})(0-2b)-(50-b^2)(\\frac{1}{2\\sqrt{100-b^2}})(0-2b)}{{100-b^2}}"
"=\\frac{-2b\\sqrt{100-b^2}+(\\frac{b(50-b^2)}{\\sqrt{100-b^2}})}{{100-b^2}}"
"=\\frac{-2b({100-b^2})+b(50-b^2)}{{(100-b^2)^{3\/2}}}"
"=\\frac{-200b+2b^2+50b-b^3}{{(100-b^2)^{3\/2}}}=\\frac{-150b+2b^2-b^3}{{(100-b^2)^{3\/2}}}"
Putting value from (iv) here,
"\\frac{d^2A}{db^2}=\\frac{-150(5\\sqrt{2})+2(50)-(50)^{3\/2}}{{(100-50)^{3\/2}}}"
"=\\frac{-750(\\sqrt{2})+100-(50)^{3\/2}}{{(50)^{3\/2}}} <0"
So, area is maximum.
Now, put value of b from (iv) in (i),
"p=\\sqrt{100-50}=\\sqrt{50}=5\\sqrt{2}"
Answer: Other two sides are "5\\sqrt{2},5\\sqrt{2}" units.
Comments
Leave a comment