Given, hypotenuse = 10 units.
Let Base be b units.
And perpendicular be p units.
Then by pythagoras theorem,
p e r p e n d i c u l a r 2 + b a s e 2 = h y p o t e n u s e 2 perpendicular^2+base^2=hypotenuse^2 p er p e n d i c u l a r 2 + ba s e 2 = h y p o t e n u s e 2
p 2 + b 2 = 1 0 2 ⇒ p 2 + b 2 = 100 p^2+b^2=10^2
\\ \Rightarrow p^2+b^2=100 p 2 + b 2 = 1 0 2 ⇒ p 2 + b 2 = 100
⇒ p = 100 − b 2 \Rightarrow p=\sqrt{100-b^2} ⇒ p = 100 − b 2 ...(i)
Now, area of right triangle = 1 2 × b a s e × h e i g h t = 1 2 × p × b =\frac12 \times base \times height=\frac12 \times p \times b = 2 1 × ba se × h e i g h t = 2 1 × p × b
A = 1 2 p b A = \frac12p b A = 2 1 p b ...(ii)
Putting value from (i) into (ii),
A = 1 2 b 100 − b 2 A=\frac12 b\sqrt{100-b^2} A = 2 1 b 100 − b 2
On differentiating w.r.t b,
d A d b = 1 2 [ ( b ) ′ 100 − b 2 + b ( 100 − b 2 ) ′ ] = 1 2 [ ( 1 ) 100 − b 2 + b × 1 2 100 − b 2 × ( 0 − 2 b ) ] = 1 2 [ 100 − b 2 − b 2 100 − b 2 ] \frac{dA}{db}=\frac12 [(b)'\sqrt{100-b^2}+b(\sqrt{100-b^2})']
\\=\frac12 [(1)\sqrt{100-b^2}+b\times \frac{1}{2\sqrt{100-b^2}}\times(0-2b)]
\\=\frac12 [\sqrt{100-b^2}- \frac{b^2}{\sqrt{100-b^2}}] d b d A = 2 1 [( b ) ′ 100 − b 2 + b ( 100 − b 2 ) ′ ] = 2 1 [( 1 ) 100 − b 2 + b × 2 100 − b 2 1 × ( 0 − 2 b )] = 2 1 [ 100 − b 2 − 100 − b 2 b 2 ] ...(iii)
Now, put d A d b = 0 \frac{dA}{db}=0 d b d A = 0
1 2 [ 100 − b 2 − b 2 100 − b 2 ] = 0 ⇒ 100 − b 2 − b 2 100 − b 2 = 0 ⇒ 100 − b 2 = b 2 100 − b 2 ⇒ 100 − b 2 × 100 − b 2 = b 2 ⇒ ( 100 − b 2 ) = b 2 ⇒ 100 = 2 b 2 ⇒ b 2 = 50 ⇒ b = 50 = 5 2 \frac12 [\sqrt{100-b^2}- \frac{b^2}{\sqrt{100-b^2}}]=0
\\ \Rightarrow \sqrt{100-b^2}- \frac{b^2}{\sqrt{100-b^2}}=0
\\ \Rightarrow \sqrt{100-b^2}=\frac{b^2}{\sqrt{100-b^2}}
\\ \Rightarrow \sqrt{100-b^2} \times \sqrt{100-b^2}=b^2
\\ \Rightarrow (100-b^2)=b^2
\\ \Rightarrow 100=2b^2
\\ \Rightarrow b^2=50
\\ \Rightarrow b=\sqrt{50}=5\sqrt{2} 2 1 [ 100 − b 2 − 100 − b 2 b 2 ] = 0 ⇒ 100 − b 2 − 100 − b 2 b 2 = 0 ⇒ 100 − b 2 = 100 − b 2 b 2 ⇒ 100 − b 2 × 100 − b 2 = b 2 ⇒ ( 100 − b 2 ) = b 2 ⇒ 100 = 2 b 2 ⇒ b 2 = 50 ⇒ b = 50 = 5 2 ....(iv)
Consider (iii)
d A d b = 1 2 [ ( 100 − b 2 ) − b 2 100 − b 2 ] = 1 2 [ 100 − 2 b 2 100 − b 2 ] \frac{dA}{db}=\frac12 [\frac{(100-b^2)-b^2}{\sqrt{100-b^2}}]=\frac12 [\frac{100-2b^2}{\sqrt{100-b^2}}] d b d A = 2 1 [ 100 − b 2 ( 100 − b 2 ) − b 2 ] = 2 1 [ 100 − b 2 100 − 2 b 2 ]
⇒ d A d b = 50 − b 2 100 − b 2 \Rightarrow \frac{dA}{db}=\frac{50-b^2}{\sqrt{100-b^2}} ⇒ d b d A = 100 − b 2 50 − b 2
Again differentiating w.r.t b,
d 2 A d b 2 = ( 100 − b 2 ) ( 0 − 2 b ) − ( 50 − b 2 ) ( 1 2 100 − b 2 ) ( 0 − 2 b ) 100 − b 2 \frac{d^2A}{db^2}=\frac{(\sqrt{100-b^2})(0-2b)-(50-b^2)(\frac{1}{2\sqrt{100-b^2}})(0-2b)}{{100-b^2}} d b 2 d 2 A = 100 − b 2 ( 100 − b 2 ) ( 0 − 2 b ) − ( 50 − b 2 ) ( 2 100 − b 2 1 ) ( 0 − 2 b )
= − 2 b 100 − b 2 + ( b ( 50 − b 2 ) 100 − b 2 ) 100 − b 2 =\frac{-2b\sqrt{100-b^2}+(\frac{b(50-b^2)}{\sqrt{100-b^2}})}{{100-b^2}} = 100 − b 2 − 2 b 100 − b 2 + ( 100 − b 2 b ( 50 − b 2 ) )
= − 2 b ( 100 − b 2 ) + b ( 50 − b 2 ) ( 100 − b 2 ) 3 / 2 =\frac{-2b({100-b^2})+b(50-b^2)}{{(100-b^2)^{3/2}}} = ( 100 − b 2 ) 3/2 − 2 b ( 100 − b 2 ) + b ( 50 − b 2 )
= − 200 b + 2 b 2 + 50 b − b 3 ( 100 − b 2 ) 3 / 2 = − 150 b + 2 b 2 − b 3 ( 100 − b 2 ) 3 / 2 =\frac{-200b+2b^2+50b-b^3}{{(100-b^2)^{3/2}}}=\frac{-150b+2b^2-b^3}{{(100-b^2)^{3/2}}} = ( 100 − b 2 ) 3/2 − 200 b + 2 b 2 + 50 b − b 3 = ( 100 − b 2 ) 3/2 − 150 b + 2 b 2 − b 3
Putting value from (iv) here,
d 2 A d b 2 = − 150 ( 5 2 ) + 2 ( 50 ) − ( 50 ) 3 / 2 ( 100 − 50 ) 3 / 2 \frac{d^2A}{db^2}=\frac{-150(5\sqrt{2})+2(50)-(50)^{3/2}}{{(100-50)^{3/2}}} d b 2 d 2 A = ( 100 − 50 ) 3/2 − 150 ( 5 2 ) + 2 ( 50 ) − ( 50 ) 3/2
= − 750 ( 2 ) + 100 − ( 50 ) 3 / 2 ( 50 ) 3 / 2 < 0 =\frac{-750(\sqrt{2})+100-(50)^{3/2}}{{(50)^{3/2}}} <0 = ( 50 ) 3/2 − 750 ( 2 ) + 100 − ( 50 ) 3/2 < 0
So, area is maximum.
Now, put value of b from (iv) in (i),
p = 100 − 50 = 50 = 5 2 p=\sqrt{100-50}=\sqrt{50}=5\sqrt{2} p = 100 − 50 = 50 = 5 2
Answer: Other two sides are 5 2 , 5 2 5\sqrt{2},5\sqrt{2} 5 2 , 5 2 units .
Comments