"f:\\R\\rightarrow \\R^2\\\\\nf(cos(n))=(n,\\frac{1}{n})"
Let f is continuous on "[-1,1]"
"\\Rightarrow" "f" is bounded on "[-1,1]".
i.e.
"\\exists M\\in \\N \\ni \\\\\n\\;\\;\\;\\;\\;\\;\\; \\;|f(x)-f(1)|<M\\forall x\\in [-1,1]"
Now take "x=cos (M+1)"
"\\therefore f(x)=(M+1,\\frac{1}{M+1})\\\\\n\\Rightarrow |f(x)-f(1)|=|(M+1,\\frac{1}{M+1})-(1,1)|\\\\\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;=\\sqrt{M^2+(1-(\\frac{1}{M+1})^2}\\\\\n\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;>\\sqrt{M^2}=M\\\\\\;\\\\\n\\therefore |f(x)-f(1)|>M"
That contradicts the bounded property.
Therefore "\\pmb{\\exists no\\; f\\ni f}" is continuous.
Comments
Leave a comment