f : R → R 2 f ( c o s ( n ) ) = ( n , 1 n ) f:\R\rightarrow \R^2\\
f(cos(n))=(n,\frac{1}{n}) f : R → R 2 f ( cos ( n )) = ( n , n 1 )
Let f is continuous on [ − 1 , 1 ] [-1,1] [ − 1 , 1 ]
⇒ \Rightarrow ⇒ f f f is bounded on [ − 1 , 1 ] [-1,1] [ − 1 , 1 ] .
i.e.
∃ M ∈ N ∋ ∣ f ( x ) − f ( 1 ) ∣ < M ∀ x ∈ [ − 1 , 1 ] \exists M\in \N \ni \\
\;\;\;\;\;\;\; \;|f(x)-f(1)|<M\forall x\in [-1,1] ∃ M ∈ N ∋ ∣ f ( x ) − f ( 1 ) ∣ < M ∀ x ∈ [ − 1 , 1 ]
Now take x = c o s ( M + 1 ) x=cos (M+1) x = cos ( M + 1 )
∴ f ( x ) = ( M + 1 , 1 M + 1 ) ⇒ ∣ f ( x ) − f ( 1 ) ∣ = ∣ ( M + 1 , 1 M + 1 ) − ( 1 , 1 ) ∣ = M 2 + ( 1 − ( 1 M + 1 ) 2 > M 2 = M ∴ ∣ f ( x ) − f ( 1 ) ∣ > M \therefore f(x)=(M+1,\frac{1}{M+1})\\
\Rightarrow |f(x)-f(1)|=|(M+1,\frac{1}{M+1})-(1,1)|\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\sqrt{M^2+(1-(\frac{1}{M+1})^2}\\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;>\sqrt{M^2}=M\\\;\\
\therefore |f(x)-f(1)|>M ∴ f ( x ) = ( M + 1 , M + 1 1 ) ⇒ ∣ f ( x ) − f ( 1 ) ∣ = ∣ ( M + 1 , M + 1 1 ) − ( 1 , 1 ) ∣ = M 2 + ( 1 − ( M + 1 1 ) 2 > M 2 = M ∴ ∣ f ( x ) − f ( 1 ) ∣ > M
That contradicts the bounded property.
Therefore ∃ n o f ∋ f \pmb{\exists no\; f\ni f} ∃ n o f ∋ f ∃ n o f ∋ f is continuous.
Comments