Question #153611

State true or false giving proper justification for following statement:there exists a continuous function f:RtoR2 such that f(down)=(n,1/n) for all n belongs to N

1
Expert's answer
2021-01-04T17:01:45-0500

f:RR2f(cos(n))=(n,1n)f:\R\rightarrow \R^2\\ f(cos(n))=(n,\frac{1}{n})

Let f is continuous on [1,1][-1,1]

\Rightarrow ff is bounded on [1,1][-1,1].

i.e.

MN                f(x)f(1)<Mx[1,1]\exists M\in \N \ni \\ \;\;\;\;\;\;\; \;|f(x)-f(1)|<M\forall x\in [-1,1]


Now take x=cos(M+1)x=cos (M+1)

f(x)=(M+1,1M+1)f(x)f(1)=(M+1,1M+1)(1,1)                                                    =M2+(1(1M+1)2                                                    >M2=M  f(x)f(1)>M\therefore f(x)=(M+1,\frac{1}{M+1})\\ \Rightarrow |f(x)-f(1)|=|(M+1,\frac{1}{M+1})-(1,1)|\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\sqrt{M^2+(1-(\frac{1}{M+1})^2}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;>\sqrt{M^2}=M\\\;\\ \therefore |f(x)-f(1)|>M

That contradicts the bounded property.


Therefore no  ff\pmb{\exists no\; f\ni f} is continuous.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS