Equation of the curve : y = ( x − 1 ) ( x − 2 ) ( x − 3 ) \pmb {y=(x-1)(x-2)(x-3)} y = ( x − 1 ) ( x − 2 ) ( x − 3 ) y = ( x − 1 ) ( x − 2 ) ( x − 3 )
y = ( x − 1 ) ( x − 2 ) ( x − 3 ) = x 3 − 6 x 2 + 11 x − 6 y=(x-1)(x-2)(x-3)=x^3-6x^2+11x-6 y = ( x − 1 ) ( x − 2 ) ( x − 3 ) = x 3 − 6 x 2 + 11 x − 6
Differentiating w.r.t x ,
d y d x = 3 x 2 − 12 x + 11 \frac{dy}{dx}=3x^2-12x+11 d x d y = 3 x 2 − 12 x + 11 (1)
Symmetry :
The curve is not symmetric w.r.t. any line or axis.
Region :
y = ( x − 1 ) ( x − 2 ) ( x − 3 ) y=(x-1)(x-2)(x-3)\\ y = ( x − 1 ) ( x − 2 ) ( x − 3 )
y y y is defined ∀ x ∈ R \forall x\in \R ∀ x ∈ R
∴ \therefore ∴ Domain of y = ( − ∞ , ∞ ) y=(-\infty,\infty) y = ( − ∞ , ∞ )
Now from (1), d y d x \frac{dy}{dx} d x d y exists ∀ x ∈ R \forall x\in \R ∀ x ∈ R
So, y = f ( x ) y=f(x) y = f ( x ) is continuous ∀ x ∈ R \forall x\in\R ∀ x ∈ R (2)
Now,
x → ∞ ⇒ y → ∞ a n d , y → − ∞ ⇒ y → − ∞ \;\;\;\;\;\;\;\;x\to \infty\Rightarrow y\to \infty\\
and, \;y\to -\infty\Rightarrow y\to-\infty x → ∞ ⇒ y → ∞ an d , y → − ∞ ⇒ y → − ∞
So from (2), by intermediate-value theorem,
∀ y ∈ R ∃ x ∈ R ∋ y = ( x − 1 ) ( x − 2 ) ( x − 3 ) \forall y\in \R\;\;\exists x\in\R \ni y=(x-1)(x-2)(x-3) ∀ y ∈ R ∃ x ∈ R ∋ y = ( x − 1 ) ( x − 2 ) ( x − 3 )
R a n g e o f y = ( − ∞ , ∞ ) Range \; of \;y=(-\infty,\infty) R an g e o f y = ( − ∞ , ∞ )
∴ x ∈ ( − ∞ , ∞ ) , y ∈ ( − ∞ , ∞ ) \therefore x\in(-\infty,\infty),\;\; y\in (-\infty,\infty) ∴ x ∈ ( − ∞ , ∞ ) , y ∈ ( − ∞ , ∞ )
Point of Intersection :
Putting x=0, we get y=-6
and Putting y=0, we get x = 1 , 2 , 3 x=1,2,3 x = 1 , 2 , 3
∴ \therefore ∴ The curve cuts x-axis at ( 1 , 0 ) , ( 2 , 0 ) , ( 3 , 0 ) (1,0),(2,0),(3,0) ( 1 , 0 ) , ( 2 , 0 ) , ( 3 , 0 ) and,
the curve cuts y-axis at ( 0 , − 6 ) (0,-6) ( 0 , − 6 )
Tangent at Origin :
The curve does not go through the origin. So there is no tangent at the origin.
Asymptotes :
Coefficient of highest degree of x x x and y y y are both constant. So, There does not exist any horizontal or vertical asymptote.
Putting y = m x + c , y=mx+c,\\ y = m x + c ,
m x + c = x 3 − 6 x 2 + 11 x − 6 ⇒ x 3 − 6 x 2 + ( 11 − m ) x − ( c + 6 ) = 0 mx+c=x^3-6x^2+11x-6\\
\Rightarrow x^3-6x^2+(11-m)x-(c+6)=0 m x + c = x 3 − 6 x 2 + 11 x − 6 ⇒ x 3 − 6 x 2 + ( 11 − m ) x − ( c + 6 ) = 0
⇒ \Rightarrow ⇒ Coff. of x 3 = 1 = C o n s t a n t x^3=1=Constant x 3 = 1 = C o n s t an t
So There does not exist any oblique asymptote either.
Derivatives :-
d y d x = 3 x 2 − 12 x + 11 \frac{dy}{dx}=3x^2-12x+11 d x d y = 3 x 2 − 12 x + 11
Differentiating w.r.t x ,
d 2 y d x 2 = 6 x − 12 = 6 ( x − 2 ) \frac{d^2y}{dx^2}=6x-12=6(x-2) d x 2 d 2 y = 6 x − 12 = 6 ( x − 2 )
Now
d y d x = 0 ⇒ 3 x 2 − 12 x + 11 = 0 ⇒ x = 12 ± 1 2 2 − 4 × 3 × 11 6 = 6 ± 3 3 = 2 ± 1 3 \frac{dy}{dx}=0\\
\Rightarrow 3x^2-12x+11=0\\
\Rightarrow x=\frac{12\pm \sqrt{12^2-4\times3\times11}}{6}=\frac{6\pm\sqrt3}{3}=2\pm\frac{1}{\sqrt3} d x d y = 0 ⇒ 3 x 2 − 12 x + 11 = 0 ⇒ x = 6 12 ± 1 2 2 − 4 × 3 × 11 = 3 6 ± 3 = 2 ± 3 1
d 2 y d x 2 [ x = 2 + 1 / 3 ] = 6 3 > 0 \frac{d^2y}{dx^2}_{[x=2+1/\sqrt3]}=\frac{6}{\sqrt3}>0 d x 2 d 2 y [ x = 2 + 1/ 3 ] = 3 6 > 0
∴ \therefore ∴ There is a local minimum at x = 2 + 1 / 3 x=2+1/\sqrt3 x = 2 + 1/ 3
and,
d 2 y d x 2 [ x = 2 − 1 / 3 ] = − 6 3 < 0 \frac{d^2y}{dx^2}_{[x=2-1/\sqrt3]}=-\frac{6}{\sqrt3}<0 d x 2 d 2 y [ x = 2 − 1/ 3 ] = − 3 6 < 0
∴ \therefore ∴ There is a local minimum at x = 2 − 1 / 3 x=2-1/\sqrt3 x = 2 − 1/ 3
Graph :
Comments