Question #153575

Trace the curve y


2 = (x − 1)(x − 2)(x − 3).


1
Expert's answer
2021-01-04T19:42:22-0500

Equation of the curve : y=(x1)(x2)(x3)\pmb {y=(x-1)(x-2)(x-3)}


y=(x1)(x2)(x3)=x36x2+11x6y=(x-1)(x-2)(x-3)=x^3-6x^2+11x-6


Differentiating w.r.t x,

dydx=3x212x+11\frac{dy}{dx}=3x^2-12x+11 (1)


Symmetry :

The curve is not symmetric w.r.t. any line or axis.


Region :

y=(x1)(x2)(x3)y=(x-1)(x-2)(x-3)\\

yy is defined xR\forall x\in \R

\therefore Domain of y=(,)y=(-\infty,\infty)


Now from (1), dydx\frac{dy}{dx} exists xR\forall x\in \R

So, y=f(x)y=f(x) is continuous xR\forall x\in\R (2)


Now,

                xyand,  yy\;\;\;\;\;\;\;\;x\to \infty\Rightarrow y\to \infty\\ and, \;y\to -\infty\Rightarrow y\to-\infty


So from (2), by intermediate-value theorem,

yR    xRy=(x1)(x2)(x3)\forall y\in \R\;\;\exists x\in\R \ni y=(x-1)(x-2)(x-3)


Range  of  y=(,)Range \; of \;y=(-\infty,\infty)

x(,),    y(,)\therefore x\in(-\infty,\infty),\;\; y\in (-\infty,\infty)


Point of Intersection :

Putting x=0, we get y=-6

and Putting y=0, we get x=1,2,3x=1,2,3

\therefore The curve cuts x-axis at (1,0),(2,0),(3,0)(1,0),(2,0),(3,0) and,

the curve cuts y-axis at (0,6)(0,-6)


Tangent at Origin :

The curve does not go through the origin. So there is no tangent at the origin.


Asymptotes :

Coefficient of highest degree of xx and yy are both constant. So, There does not exist any horizontal or vertical asymptote.


Putting y=mx+c,y=mx+c,\\

mx+c=x36x2+11x6x36x2+(11m)x(c+6)=0mx+c=x^3-6x^2+11x-6\\ \Rightarrow x^3-6x^2+(11-m)x-(c+6)=0

\Rightarrow Coff. of x3=1=Constantx^3=1=Constant

So There does not exist any oblique asymptote either.


Derivatives :-

dydx=3x212x+11\frac{dy}{dx}=3x^2-12x+11

Differentiating w.r.t x,

d2ydx2=6x12=6(x2)\frac{d^2y}{dx^2}=6x-12=6(x-2)


Now

dydx=03x212x+11=0x=12±1224×3×116=6±33=2±13\frac{dy}{dx}=0\\ \Rightarrow 3x^2-12x+11=0\\ \Rightarrow x=\frac{12\pm \sqrt{12^2-4\times3\times11}}{6}=\frac{6\pm\sqrt3}{3}=2\pm\frac{1}{\sqrt3}


d2ydx2[x=2+1/3]=63>0\frac{d^2y}{dx^2}_{[x=2+1/\sqrt3]}=\frac{6}{\sqrt3}>0

\therefore There is a local minimum at x=2+1/3x=2+1/\sqrt3

and,

d2ydx2[x=21/3]=63<0\frac{d^2y}{dx^2}_{[x=2-1/\sqrt3]}=-\frac{6}{\sqrt3}<0

\therefore There is a local minimum at x=21/3x=2-1/\sqrt3


Graph :

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS