Solution:
1) We need to verify that "\\intop_c(2y)dx\\;+\\;(3x)dy=" "\\iint_D( \\dfrac{\u2202}{\u2202x}(3x)-\\dfrac{\u2202}{\u2202y}(2y)\t)dA" , where D denotes the region bounded by C.
x = cost
y = sin t
"\\int_C2ydx+3xdy=\\int^{ \\tfrac{\\pi}{2}\t}_0[2sint(-sint)+3cost\\;cost]dt=\\dfrac{\\pi}{4}"
"\\iint_D( \\dfrac{\u2202}{\u2202x}(3x)-\\dfrac{\u2202}{\u2202y}(2y)\t)dA=\\iint_DdA=\\dfrac{\\pi}{4}"
Comments
Leave a comment