Question #151080

Differentiate the given trigonometric functions.

1. ๐‘“(๐‘ฅ) = 3 ๐‘ ๐‘–๐‘›2๐‘ฅ ๐‘๐‘œ๐‘ 4๐‘ฅ

2. ๐‘ฆ = 1/2 ๐‘ก๐‘Ž๐‘›^4(๐‘ ๐‘’๐‘ 6๐‘ฅ)

3. ๐‘”(๐‘ก) = tan ๐‘ก/๐‘๐‘œ๐‘ ๐‘กโˆ’4

4. ๐‘ฆ = 8 ๐‘๐‘ ๐‘ ๐‘ฅ/4 ๐‘๐‘œ๐‘ก ๐‘ฅ/4

5. ๐‘“(๐‘ฅ) = ๐‘ฅ๐‘ ๐‘–๐‘›3๐‘ฅ + ๐‘ฅ ๐‘๐‘œ๐‘ 3๐‘ฅ


1
Expert's answer
2020-12-15T19:51:22-0500

1) Here f(x)=3.sin2x.cos4xf(x)=3.sin2x.cos4x

So, fโ€ฒ(x)=ddx(3.sin2x.cos4x)f'(x)=\frac{d}{dx}(3.sin2x.cos4x)

=3.ddx(sin3x.cos4x)=3.\frac{d}{dx}(sin3x.cos4x)

=3.[sin3x.ddx(cos4x)+cos4x.ddx(sin3x)]=3.[sin3x.\frac{d}{dx}(cos4x)+cos4x.\frac{d}{dx}(sin3x)]

=3.[sin3x.(โˆ’sin4x).ddx(4x)+cos4x.cos3x.ddx(3x)]=3.[sin3x.(-sin4x).\frac{d}{dx}(4x)+cos4x.cos3x.\frac{d}{dx}(3x)]

=3.[sin3x.(โˆ’sin4x).4+cos4x.cos3x.3]=3.[sin3x.(-sin4x).4+cos4x.cos3x.3]

=3.[โˆ’4.sin3x.sin4x+3.cos3x.cos4x]=3.[-4.sin3x.sin4x+3.cos3x.cos4x]


2) Here y=(1/2)tan4(sec6x)y=(1/2)tan^4(sec6x)

Now, dydx=ddx[12.tan4(sec6x)]\frac{dy}{dx}=\frac{d}{dx}[\frac{1}{2}.tan^4(sec6x)]

=12.ddx[tan4(sec6x)]=\frac{1}{2}.\frac{d}{dx}[tan^4(sec6x)]

=12.4.tan3(sec6x).ddx[tan(sec6x)]=\frac{1}{2}.4.tan^3(sec6x).\frac{d}{dx}[tan(sec6x)]

=2.tan3(sec6x).sec2(sec6x).ddx(sec6x)=2.tan^3(sec6x).sec^2(sec6x).\frac{d}{dx}(sec6x)

=2.tan3(sec6x).sec2(sec6x).(sec6x.tan6x).ddx(6x)=2.tan^3(sec6x).sec^2(sec6x).(sec6x.tan6x).\frac {d}{dx}(6x)

=2.tan3(sec6x).sec2(sec6x).sec6x.tan6x.6=2.tan^3(sec6x).sec^2(sec6x).sec6x.tan6x.6

=12.sec6x.tan6x.sec2(sec6x).tan2(sec6x)=12.sec6x.tan6x.sec^2(sec6x).tan^2(sec6x)


3) Here g(t)=tantcostโˆ’4g(t)=\frac{tant}{cost-4}

Therefore, gโ€ฒ(t)=ddt[tantcostโˆ’4]g'(t)=\frac {d}{dt}[\frac{tant}{cost-4}]

=[(costโˆ’4).ddt(tant)]โˆ’[tant.ddt(costโˆ’4)](costโˆ’4)2=\frac{[(cost-4).\frac{d}{dt}(tant)]-[tant.\frac{d}{dt}(cost-4)]}{(cost-4)^2}

=[(costโˆ’4).sec2t]โˆ’[tant.(โˆ’sint)](costโˆ’4)2=\frac{[(cost-4).sec^2t]-[tant.(-sint)]}{(cost-4)^2}

=sec2t.(costโˆ’4)+tant.sint(costโˆ’4)2=\frac{sec^2t.(cost-4)+tant.sint}{(cost-4)^2}


4) Here y=8.csc(x4).cot(x4)y=8.csc(\frac{x}{4}).cot(\frac{x}{4})

Therefore, dydx=ddx[8.csc(x4).cot(x4)]\frac{dy}{dx}=\frac{d}{dx}[8.csc(\frac{x}{4}).cot(\frac{x}{4})]

=8[csc(x4).ddx(cot(x4))+cot(x4).ddx(csc(x4))]=8[csc(\frac{x}{4}).\frac{d}{dx}(cot(\frac{x}{4}))+cot(\frac{x}{4}).\frac{d}{dx}(csc(\frac{x}{4}))]

=8[csc(x4).(โˆ’csc2(x4)).ddx(x4)+cot(x4).(โˆ’csc(x4).cot(x4)).ddx(x4)]=8[csc(\frac{x}{4}).(-csc^2(\frac{x}{4})).\frac{d}{dx}(\frac{x}{4})+cot(\frac{x}{4}).(-csc(\frac{x}{4}).cot(\frac{x}{4})).\frac{d}{dx}(\frac{x}{4})]

=8[โˆ’csc3(x4).14โˆ’csc(x4).cot2(x4).14]=8[-csc^3(\frac{x}{4}).\frac{1}{4}-csc(\frac{x}{4}).cot^2(\frac{x}{4}).\frac{1}{4}]

=โˆ’8.14.csc(x4)[csc2(x4)+cot2(x4)]=-8.\frac{1}{4}.csc(\frac{x}{4})[csc^2(\frac{x}{4})+cot^2(\frac{x}{4})]

=โˆ’2.csc(x4)[csc2(x4)+cot2(x4)]=-2.csc(\frac{x}{4})[csc^2(\frac{x}{4})+cot^2(\frac{x}{4})]


5) Here f(x)=x.sin3x+x.cos3xf(x)=x.sin3x+x.cos3x

=x.(sin3x+cos3x)=x.(sin3x+cos3x)

Therefore, fโ€ฒ(x)=ddx[x.(sin3x+cos3x)]f'(x)=\frac{d}{dx}[x.(sin3x+cos3x)]

=x.ddx(sin3x+cos3x)+(sin3x+cos3x).ddx(x)=x.\frac{d}{dx}(sin3x+cos3x)+(sin3x+cos3x).\frac{d}{dx}(x)

=x.[cos3x.ddx(3x)+(โˆ’sin3x).ddx(3x)]+(sin3x+cos3x).1=x.[cos3x.\frac{d}{dx}(3x)+(-sin3x).\frac{d}{dx}(3x)]+(sin3x+cos3x).1

=x.[3.cos3xโˆ’3.sin3x]+(sin3x+cos3x)=x.[3.cos3x-3.sin3x]+(sin3x+cos3x)

=(1โˆ’3x).sin3x+(1+3x).cos3x=(1-3x).sin3x+(1+3x).cos3x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS