1) Here f(x)=3.sin2x.cos4x
So, fโฒ(x)=dxdโ(3.sin2x.cos4x)
=3.dxdโ(sin3x.cos4x)
=3.[sin3x.dxdโ(cos4x)+cos4x.dxdโ(sin3x)]
=3.[sin3x.(โsin4x).dxdโ(4x)+cos4x.cos3x.dxdโ(3x)]
=3.[sin3x.(โsin4x).4+cos4x.cos3x.3]
=3.[โ4.sin3x.sin4x+3.cos3x.cos4x]
2) Here y=(1/2)tan4(sec6x)
Now, dxdyโ=dxdโ[21โ.tan4(sec6x)]
=21โ.dxdโ[tan4(sec6x)]
=21โ.4.tan3(sec6x).dxdโ[tan(sec6x)]
=2.tan3(sec6x).sec2(sec6x).dxdโ(sec6x)
=2.tan3(sec6x).sec2(sec6x).(sec6x.tan6x).dxdโ(6x)
=2.tan3(sec6x).sec2(sec6x).sec6x.tan6x.6
=12.sec6x.tan6x.sec2(sec6x).tan2(sec6x)
3) Here g(t)=costโ4tantโ
Therefore, gโฒ(t)=dtdโ[costโ4tantโ]
=(costโ4)2[(costโ4).dtdโ(tant)]โ[tant.dtdโ(costโ4)]โ
=(costโ4)2[(costโ4).sec2t]โ[tant.(โsint)]โ
=(costโ4)2sec2t.(costโ4)+tant.sintโ
4) Here y=8.csc(4xโ).cot(4xโ)
Therefore, dxdyโ=dxdโ[8.csc(4xโ).cot(4xโ)]
=8[csc(4xโ).dxdโ(cot(4xโ))+cot(4xโ).dxdโ(csc(4xโ))]
=8[csc(4xโ).(โcsc2(4xโ)).dxdโ(4xโ)+cot(4xโ).(โcsc(4xโ).cot(4xโ)).dxdโ(4xโ)]
=8[โcsc3(4xโ).41โโcsc(4xโ).cot2(4xโ).41โ]
=โ8.41โ.csc(4xโ)[csc2(4xโ)+cot2(4xโ)]
=โ2.csc(4xโ)[csc2(4xโ)+cot2(4xโ)]
5) Here f(x)=x.sin3x+x.cos3x
=x.(sin3x+cos3x)
Therefore, fโฒ(x)=dxdโ[x.(sin3x+cos3x)]
=x.dxdโ(sin3x+cos3x)+(sin3x+cos3x).dxdโ(x)
=x.[cos3x.dxdโ(3x)+(โsin3x).dxdโ(3x)]+(sin3x+cos3x).1
=x.[3.cos3xโ3.sin3x]+(sin3x+cos3x)
=(1โ3x).sin3x+(1+3x).cos3x
Comments