Differentiate the given trigonometric functions.
1. π(π₯) = 3 π ππ2π₯ πππ 4π₯
2. π¦ = 1/2 π‘ππ^4(π ππ 6π₯)
3. π(π‘) = tan π‘/πππ π‘β4
4. π¦ = 8 ππ π π₯/4 πππ‘ π₯/4
5. π(π₯) = π₯π ππ3π₯ + π₯ πππ 3π₯
1) Here "f(x)=3.sin2x.cos4x"
So, "f'(x)=\\frac{d}{dx}(3.sin2x.cos4x)"
"=3.\\frac{d}{dx}(sin3x.cos4x)"
"=3.[sin3x.\\frac{d}{dx}(cos4x)+cos4x.\\frac{d}{dx}(sin3x)]"
"=3.[sin3x.(-sin4x).\\frac{d}{dx}(4x)+cos4x.cos3x.\\frac{d}{dx}(3x)]"
"=3.[sin3x.(-sin4x).4+cos4x.cos3x.3]"
"=3.[-4.sin3x.sin4x+3.cos3x.cos4x]"
2) Here "y=(1\/2)tan^4(sec6x)"
Now, "\\frac{dy}{dx}=\\frac{d}{dx}[\\frac{1}{2}.tan^4(sec6x)]"
"=\\frac{1}{2}.\\frac{d}{dx}[tan^4(sec6x)]"
"=\\frac{1}{2}.4.tan^3(sec6x).\\frac{d}{dx}[tan(sec6x)]"
"=2.tan^3(sec6x).sec^2(sec6x).\\frac{d}{dx}(sec6x)"
"=2.tan^3(sec6x).sec^2(sec6x).(sec6x.tan6x).\\frac {d}{dx}(6x)"
"=2.tan^3(sec6x).sec^2(sec6x).sec6x.tan6x.6"
"=12.sec6x.tan6x.sec^2(sec6x).tan^2(sec6x)"
3) Here "g(t)=\\frac{tant}{cost-4}"
Therefore, "g'(t)=\\frac {d}{dt}[\\frac{tant}{cost-4}]"
"=\\frac{[(cost-4).\\frac{d}{dt}(tant)]-[tant.\\frac{d}{dt}(cost-4)]}{(cost-4)^2}"
"=\\frac{[(cost-4).sec^2t]-[tant.(-sint)]}{(cost-4)^2}"
"=\\frac{sec^2t.(cost-4)+tant.sint}{(cost-4)^2}"
4) Here "y=8.csc(\\frac{x}{4}).cot(\\frac{x}{4})"
Therefore, "\\frac{dy}{dx}=\\frac{d}{dx}[8.csc(\\frac{x}{4}).cot(\\frac{x}{4})]"
"=8[csc(\\frac{x}{4}).\\frac{d}{dx}(cot(\\frac{x}{4}))+cot(\\frac{x}{4}).\\frac{d}{dx}(csc(\\frac{x}{4}))]"
"=8[csc(\\frac{x}{4}).(-csc^2(\\frac{x}{4})).\\frac{d}{dx}(\\frac{x}{4})+cot(\\frac{x}{4}).(-csc(\\frac{x}{4}).cot(\\frac{x}{4})).\\frac{d}{dx}(\\frac{x}{4})]"
"=8[-csc^3(\\frac{x}{4}).\\frac{1}{4}-csc(\\frac{x}{4}).cot^2(\\frac{x}{4}).\\frac{1}{4}]"
"=-8.\\frac{1}{4}.csc(\\frac{x}{4})[csc^2(\\frac{x}{4})+cot^2(\\frac{x}{4})]"
"=-2.csc(\\frac{x}{4})[csc^2(\\frac{x}{4})+cot^2(\\frac{x}{4})]"
5) Here "f(x)=x.sin3x+x.cos3x"
"=x.(sin3x+cos3x)"
Therefore, "f'(x)=\\frac{d}{dx}[x.(sin3x+cos3x)]"
"=x.\\frac{d}{dx}(sin3x+cos3x)+(sin3x+cos3x).\\frac{d}{dx}(x)"
"=x.[cos3x.\\frac{d}{dx}(3x)+(-sin3x).\\frac{d}{dx}(3x)]+(sin3x+cos3x).1"
"=x.[3.cos3x-3.sin3x]+(sin3x+cos3x)"
"=(1-3x).sin3x+(1+3x).cos3x"
Comments
Leave a comment