1) Given I=∫01x3.(x4+1)dx
Let, z=x4+1
Then,dz/dx=4x3
⟹dz/4=x3dx
Now,∫x3.(x4+1)dx=∫z.(dz/4)
=(1/4).(z2/2)+C
=(1/8).(x4+1)2+C
Therefore, I=∫01x3.(x4+1)dx
=[(1/8).(x4+1)2+C]01
=(1/8).(14+1)2−(1/8).(04+1)2
=4.(1/8)−(1/8)
=3/8
2)Given I=∫0π/4tan7x.sec2xdx
Let, z=tanx
Then,dz/dx=sec2x
⟹dz=sec2xdx
Again,when x→π/4,z→1 and
when x→0,z→0
Therefore, I=∫0π/4tan7x.sec2xdx
=∫01z7dz
=[z8/8]01
=(1/8).[18−0]
=(1/8)
3) Given I=∫sec(cosx).sinx dx
Let, z=cosx
Then, dz/dx=(−sinx)
⟹(−dz)=sinx dx
Therefore, I=∫sec(cosx).sinx dx
=∫secz(−dz)
=−∫secz dz
=−log∣secz+tanz∣+C
=−log∣sec(cosx)+tan(cosx)∣+C
Comments