Integrate the following functions w.r.t. x using substitution:
i) x x 1dx
1
3 4
∫
+ ii) ∫
π
4
7 2
tan x sec x dx
iii) ∫
sec (cos )x sin x dx
1) Given "I=\\intop _0^1x^3.(x^4+1)dx"
Let, "z=x^4+1"
Then,"dz\/dx =4x^3"
"\\implies dz\/4=x^3dx"
Now,"\\intop x^3.(x^4+1)dx=\\intop z.(dz\/4)"
"=(1\/4).(z^2\/2)+C"
"=(1\/8).(x^4+1)^2+C"
Therefore, "I=\\intop _0^1x^3.(x^4+1)dx"
"=[(1\/8).(x^4+1)^2+C]_0^1"
"=(1\/8).(1^4+1)^2-(1\/8).(0^4+1)^2"
"=4.(1\/8)-(1\/8)"
"=3\/8"
2)Given "I=\\intop _{0}^{\\pi \/4} tan^7x.sec^2x dx"
Let, "z=tanx"
Then,"{dz}\/{dx}=sec^2x"
"\\implies dz=sec^2xdx"
Again,when "x\\to \\pi \/4,z\\to1" and
when "x\\to 0,z\\to 0"
Therefore, "I=\\intop _0^{\\pi\/4}tan^7x.sec^2xdx"
"=\\intop _0^1z^7dz"
"=[z^8\/8]_0^1"
"=(1\/8).[1^8-0]"
"=(1\/8)"
3) Given "I=\\intop sec(cosx).sinx" "dx"
Let, "z=cosx"
Then, "dz\/dx=(-sinx)"
"\\implies (-dz)=sinx" "dx"
Therefore, "I=\\intop sec(cosx).sinx" "dx"
"=\\intop secz (-dz)"
"=-\\intop secz" "dz"
"=-log|secz+tanz|+C"
"=-log|sec(cosx)+tan(cosx)|+C"
Comments
Leave a comment