Question #150989

Integrate the following functions w.r.t. x using substitution: 

 i) x x 1dx

1


3 4

+ ii) ∫

π

4


7 2

tan x sec x dx

 iii) ∫

sec (cos )x sin x dx


1
Expert's answer
2020-12-15T11:07:00-0500

1) Given I=01x3.(x4+1)dxI=\intop _0^1x^3.(x^4+1)dx

Let, z=x4+1z=x^4+1

Then,dz/dx=4x3dz/dx =4x^3

    dz/4=x3dx\implies dz/4=x^3dx

Now,x3.(x4+1)dx=z.(dz/4)\intop x^3.(x^4+1)dx=\intop z.(dz/4)

=(1/4).(z2/2)+C=(1/4).(z^2/2)+C

=(1/8).(x4+1)2+C=(1/8).(x^4+1)^2+C

Therefore, I=01x3.(x4+1)dxI=\intop _0^1x^3.(x^4+1)dx

=[(1/8).(x4+1)2+C]01=[(1/8).(x^4+1)^2+C]_0^1

=(1/8).(14+1)2(1/8).(04+1)2=(1/8).(1^4+1)^2-(1/8).(0^4+1)^2

=4.(1/8)(1/8)=4.(1/8)-(1/8)

=3/8=3/8


2)Given I=0π/4tan7x.sec2xdxI=\intop _{0}^{\pi /4} tan^7x.sec^2x dx

Let, z=tanxz=tanx

Then,dz/dx=sec2x{dz}/{dx}=sec^2x

    dz=sec2xdx\implies dz=sec^2xdx

Again,when xπ/4,z1x\to \pi /4,z\to1 and

when x0,z0x\to 0,z\to 0

Therefore, I=0π/4tan7x.sec2xdxI=\intop _0^{\pi/4}tan^7x.sec^2xdx

=01z7dz=\intop _0^1z^7dz

=[z8/8]01=[z^8/8]_0^1

=(1/8).[180]=(1/8).[1^8-0]

=(1/8)=(1/8)

3) Given I=sec(cosx).sinxI=\intop sec(cosx).sinx dxdx

Let, z=cosxz=cosx

Then, dz/dx=(sinx)dz/dx=(-sinx)

    (dz)=sinx\implies (-dz)=sinx dxdx

Therefore, I=sec(cosx).sinxI=\intop sec(cosx).sinx dxdx

=secz(dz)=\intop secz (-dz)

=secz=-\intop secz dzdz

=logsecz+tanz+C=-log|secz+tanz|+C

=logsec(cosx)+tan(cosx)+C=-log|sec(cosx)+tan(cosx)|+C




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS