Question #150639
Evaluate ∫x sinx dx
1
Expert's answer
2020-12-15T01:23:31-0500

xsinxdx=udvu=xdu=dx,dv=sinxdxdv=sinxdxv=cosxudv=uvvduxsinxdx=x(cosx)(cosx)dxxsinxdx=xcosx+(cosx)dxxsinxdx=xcosx+sinx+cxsinxdx=sinxxcosx+c\int xsinxdx=\int udv\\ u=x\\ du=dx, \\ dv=sinxdx\\ \int dv = \int sinxdx\\ v=-cosx\\ \int udv=uv-\int vdu\\ \int xsinxdx=x(-cosx)-\int (-cosx)dx\\ \int xsinxdx=-xcosx+\int (cosx)dx\\ \int xsinxdx=-xcosx+sinx+c\\ \int xsinxdx=sinx-xcosx+c\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS