∫xsinxdx=∫udvu=xdu=dx,dv=sinxdx∫dv=∫sinxdxv=−cosx∫udv=uv−∫vdu∫xsinxdx=x(−cosx)−∫(−cosx)dx∫xsinxdx=−xcosx+∫(cosx)dx∫xsinxdx=−xcosx+sinx+c∫xsinxdx=sinx−xcosx+c\int xsinxdx=\int udv\\ u=x\\ du=dx, \\ dv=sinxdx\\ \int dv = \int sinxdx\\ v=-cosx\\ \int udv=uv-\int vdu\\ \int xsinxdx=x(-cosx)-\int (-cosx)dx\\ \int xsinxdx=-xcosx+\int (cosx)dx\\ \int xsinxdx=-xcosx+sinx+c\\ \int xsinxdx=sinx-xcosx+c\\∫xsinxdx=∫udvu=xdu=dx,dv=sinxdx∫dv=∫sinxdxv=−cosx∫udv=uv−∫vdu∫xsinxdx=x(−cosx)−∫(−cosx)dx∫xsinxdx=−xcosx+∫(cosx)dx∫xsinxdx=−xcosx+sinx+c∫xsinxdx=sinx−xcosx+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments