Answer to Question #151155 in Calculus for Angelo

Question #151155

Differentiate the Logarithmic functions:

1. 𝑦 = 𝑥^3𝑙𝑛^2𝑥 + 𝑥^2𝑙𝑛𝑥^3 + 1

2. 𝑔(𝑥) = 𝑙𝑛 (𝑥^2+1/𝑥^3+5)

3. ℎ(𝑥) = 𝑙𝑜𝑔(𝑐𝑜𝑡4𝑥 − 𝑐𝑠𝑐4𝑥)

4. 𝑦 = 𝑙𝑛(𝑥^3𝑠𝑖𝑛2𝑥)

5. 𝑦 = 𝑙𝑛(𝑐𝑜𝑠5𝑥 + 𝑠𝑖𝑛5𝑥)



1
Expert's answer
2020-12-20T18:01:55-0500

1.

y=(𝑥3ln2x+𝑥2lnx3+1)y'=(𝑥^3 \ln^2x + 𝑥^2\ln x^3+ 1)'

=3x2ln2x+x3(2lnx)(1x)+2x(3lnx)+3x2(1x)+0=3x^2 \ln^2x+x^3(2\ln x)(\dfrac{1}{x})+2x(3\ln x)+3x^2(\dfrac{1}{x})+0

=3x2ln2x+2x2lnx+6xlnx+6,x>0=3x^2 \ln^2x+2x^2\ln x+6x\ln x+6, x>0

2.


𝑔(𝑥)=(ln(𝑥2+1/𝑥3+5))𝑔'(𝑥) = (\ln (𝑥^2+1/𝑥^3+5))'

=1x2+1x3+5(2x3x4+0)=\dfrac{1}{x^2+\dfrac{1}{x^3}+5}(2x-\dfrac{3}{x^4 }+0)

=2x53x6+5x4+x=\dfrac{2x^5-3}{x^6+5x^4+x}

3.


h(𝑥)=(log(cot4𝑥csc4𝑥))ℎ'(𝑥) = (\log(\cot4𝑥 − \csc4𝑥))'

=1ln104(1sin24x)4(cos4xsin24x)cot4𝑥csc4𝑥= \dfrac{1}{\ln 10}\cdot\dfrac{4(-\dfrac{1}{\sin^24x})-4(-\dfrac{\cos4x}{\sin^24x})}{\cot4𝑥 − \csc4𝑥}

=4ln101+cos4xsin4x(cos4𝑥1)= \dfrac{4}{\ln 10}\cdot\dfrac{-1+\cos 4x}{\sin 4x(\cos4𝑥 −1)}

=4ln10csc4x= \dfrac{4}{\ln 10}\csc 4x

cot4𝑥csc4𝑥>0=>cos4x1sin4x>0\cot4𝑥 − \csc4𝑥>0=>\dfrac{\cos 4x-1}{\sin 4x}>0

=>1cos4xsin4x<0=>sin4x<0=>\dfrac{1-\cos 4x}{\sin 4x}<0=>\sin 4x<0


4.


y=(ln(𝑥3sin2𝑥))=y' = (\ln(𝑥^3\sin 2𝑥))'=

=3x2sin2x+2x3cos2xx3sin2x=\dfrac{3x^2\sin 2x+2x^3\cos 2x}{x^3\sin 2x}

=3x+2cot2x, xsin2x>0=\dfrac{3}{x}+2\cot 2x, \ x\sin 2x>0

5.


y=(ln(cos5𝑥+sin5𝑥))y' =(\ln(\cos5𝑥 + \sin5𝑥))'

=1cos5𝑥+sin5𝑥(5sin5x+5cos5x)=\dfrac{1}{\cos5𝑥 + \sin5𝑥}(-5\sin 5x+5\cos 5x)

=5cos5xsin5xcos5𝑥+sin5𝑥, cos5𝑥+sin5𝑥>0=5\cdot\dfrac{\cos 5x-\sin 5x}{\cos5𝑥 + \sin5𝑥},\ \cos5𝑥 + \sin5𝑥>0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment