Differentiate the Logarithmic functions:
1. π¦ = π₯^3ππ^2π₯ + π₯^2πππ₯^3 + 1
2. π(π₯) = ππ (π₯^2+1/π₯^3+5)
3. β(π₯) = πππ(πππ‘4π₯ β ππ π4π₯)
4. π¦ = ππ(π₯^3π ππ2π₯)
5. π¦ = ππ(πππ 5π₯ + π ππ5π₯)
1.
"y'=(\ud835\udc65^3 \\ln^2x + \ud835\udc65^2\\ln x^3+ 1)'""=3x^2 \\ln^2x+x^3(2\\ln x)(\\dfrac{1}{x})+2x(3\\ln x)+3x^2(\\dfrac{1}{x})+0"
"=3x^2 \\ln^2x+2x^2\\ln x+6x\\ln x+6, x>0"
2.
"=\\dfrac{1}{x^2+\\dfrac{1}{x^3}+5}(2x-\\dfrac{3}{x^4 }+0)"
"=\\dfrac{2x^5-3}{x^6+5x^4+x}"
3.
"= \\dfrac{1}{\\ln 10}\\cdot\\dfrac{4(-\\dfrac{1}{\\sin^24x})-4(-\\dfrac{\\cos4x}{\\sin^24x})}{\\cot4\ud835\udc65 \u2212 \\csc4\ud835\udc65}"
"= \\dfrac{4}{\\ln 10}\\cdot\\dfrac{-1+\\cos 4x}{\\sin 4x(\\cos4\ud835\udc65 \u22121)}"
"= \\dfrac{4}{\\ln 10}\\csc 4x"
"\\cot4\ud835\udc65 \u2212 \\csc4\ud835\udc65>0=>\\dfrac{\\cos 4x-1}{\\sin 4x}>0"
"=>\\dfrac{1-\\cos 4x}{\\sin 4x}<0=>\\sin 4x<0"
4.
"=\\dfrac{3x^2\\sin 2x+2x^3\\cos 2x}{x^3\\sin 2x}"
"=\\dfrac{3}{x}+2\\cot 2x, \\ x\\sin 2x>0"
5.
"=\\dfrac{1}{\\cos5\ud835\udc65 + \\sin5\ud835\udc65}(-5\\sin 5x+5\\cos 5x)"
"=5\\cdot\\dfrac{\\cos 5x-\\sin 5x}{\\cos5\ud835\udc65 + \\sin5\ud835\udc65},\\ \\cos5\ud835\udc65 + \\sin5\ud835\udc65>0"
Comments
Leave a comment