1) Here f ( x ) = a r c s i n ( c o s x ) f(x)=arcsin(cosx) f ( x ) = a rcs in ( cos x )
Therefore f ′ ( x ) = 1 1 − c o s 2 x . d d x ( c o s x ) f'(x)=\frac{1}{\sqrt{1-cos^2x}}.\frac{d}{dx}(cosx) f ′ ( x ) = 1 − co s 2 x 1 . d x d ( cos x )
= 1 s i n 2 x . ( − s i n x ) =\frac{1}{\sqrt {sin^2x}}.(-sinx) = s i n 2 x 1 . ( − s in x )
= ( − s i n x ) s i n x =\frac{(-sinx)}{sinx} = s in x ( − s in x )
= − 1 =-1 = − 1
∴ f ′ ′ ( x ) = 0 \therefore f''(x)=0 ∴ f ′′ ( x ) = 0
Hence, f ′ ′ ( π ) = 0 f''(\pi)=0 f ′′ ( π ) = 0
2)Given that , C o t − 1 ( x y ) − t a n − 1 ( y x ) = 0 Cot^{-1}(xy)-tan^{-1}(\frac {y}{x})=0 C o t − 1 ( x y ) − t a n − 1 ( x y ) = 0 .........( 1 ) (1) ( 1 )
Now differentiating both side of (1) with respect to x x x ,we get
⟹ ( − 1 ) 1 + x 2 y 2 . d d x ( x y ) − 1 1 + ( y x ) 2 . d d x ( y x ) = 0 \implies \frac{(-1)}{1+x^2y^2}.\frac{d}{dx}(xy)-\frac{1}{1+(\frac{y}{x})^2}.\frac{d}{dx}(\frac{y}{x})=0 ⟹ 1 + x 2 y 2 ( − 1 ) . d x d ( x y ) − 1 + ( x y ) 2 1 . d x d ( x y ) = 0
⟹ \implies ⟹ 1 1 + x 2 y 2 . ( y + x . d y d x ) + ( x 2 x 2 + y 2 ) . ( x d y d x − y x 2 ) = 0 \frac{1}{1+x^2y^2}.(y+x.\frac{dy}{dx})+(\frac{x^2}{x^2+y^2}).(\frac{x\frac{dy}{dx}-y}{x^2})=0 1 + x 2 y 2 1 . ( y + x . d x d y ) + ( x 2 + y 2 x 2 ) . ( x 2 x d x d y − y ) = 0
⟹ \implies ⟹ y 1 + x 2 y 2 + x d y d x 1 + x 2 y 2 + x d y d x x 2 + y 2 − y x 2 + y 2 = 0 \frac{y}{1+x^2y^2}+\frac{x\frac{dy}{dx}}{1+x^2y^2}+\frac{x\frac{dy}{dx}}{x^2+y^2}-\frac{y}{x^2+y^2}=0 1 + x 2 y 2 y + 1 + x 2 y 2 x d x d y + x 2 + y 2 x d x d y − x 2 + y 2 y = 0
⟹ y . ( 1 1 + x 2 y 2 − 1 x 2 + y 2 ) + x d y d x . ( 1 1 + x 2 y 2 + 1 x 2 + y 2 ) = 0 \implies y.(\frac{1}{1+x^2y^2}-\frac{1}{x^2+y^2})+x\frac{dy}{dx}.(\frac{1}{1+x^2y^2}+\frac{1}{x^2+y^2})=0 ⟹ y . ( 1 + x 2 y 2 1 − x 2 + y 2 1 ) + x d x d y . ( 1 + x 2 y 2 1 + x 2 + y 2 1 ) = 0
⟹ y . [ x 2 + y 2 − x 2 y 2 − 1 ( 1 + x 2 y 2 ) ( x 2 + y 2 ) ] + x d y d x . [ x 2 + y 2 + x 2 y 2 + 1 ( 1 + x 2 y 2 ) ( x 2 + y 2 ) ] = 0 \implies y.[\frac{x^2+y^2-x^2y^2-1}{(1+x^2y^2)(x^2+y^2)}]+x\frac{dy}{dx}.[\frac{x^2+y^2+x^2y^2+1}{(1+x^2y^2)(x^2+y^2)}]=0 ⟹ y . [ ( 1 + x 2 y 2 ) ( x 2 + y 2 ) x 2 + y 2 − x 2 y 2 − 1 ] + x d x d y . [ ( 1 + x 2 y 2 ) ( x 2 + y 2 ) x 2 + y 2 + x 2 y 2 + 1 ] = 0
⟹ d y d x = − ( y x ) . [ x 2 + y 2 − x 2 y 2 − 1 x 2 + y 2 + x 2 y 2 + 1 ] \implies \frac {dy}{dx}=-(\frac {y}{x}).[\frac {x^2+y^2-x^2y^2-1}{x^2+y^2+x^2y^2+1}] ⟹ d x d y = − ( x y ) . [ x 2 + y 2 + x 2 y 2 + 1 x 2 + y 2 − x 2 y 2 − 1 ]
3) Given ,h ( t ) = a r c c o s ( t − 1 t + 1 ) h(t)=arccos(\frac {t-1}{t+1}) h ( t ) = a rccos ( t + 1 t − 1 )
Then h ′ ( t ) = − 1 1 − ( t − 1 t + 1 ) 2 . d d t ( t − 1 t + 1 ) h'(t)=\frac{-1}{\sqrt{1-(\frac {t-1}{t+1})^2}}.\frac{d}{dt}(\frac{t-1}{t+1}) h ′ ( t ) = 1 − ( t + 1 t − 1 ) 2 − 1 . d t d ( t + 1 t − 1 )
= − 1 1 − ( t − 1 t + 1 ) 2 . [ ( t + 1 ) . d d t ( t − 1 ) − ( t − 1 ) . d d t ( t + 1 ) ( t + 1 ) 2 ] =\frac{-1}{\sqrt{1-(\frac {t-1}{t+1})^2}}.[\frac {(t+1). \frac{d}{dt}(t-1)-(t-1).\frac{d}{dt}(t+1)}{(t+1)^2}] = 1 − ( t + 1 t − 1 ) 2 − 1 . [ ( t + 1 ) 2 ( t + 1 ) . d t d ( t − 1 ) − ( t − 1 ) . d t d ( t + 1 ) ]
= − ( t + 1 ) ( t + 1 ) 2 − ( t − 1 ) 2 . [ ( t + 1 ) . 1 − ( t − 1 ) . 1 ( t + 1 ) 2 ] =\frac {-(t+1)}{\sqrt{(t+1)^2-(t-1)^2}}. [\frac {(t+1). 1-(t-1).1}{(t+1)^2}] = ( t + 1 ) 2 − ( t − 1 ) 2 − ( t + 1 ) . [ ( t + 1 ) 2 ( t + 1 ) .1 − ( t − 1 ) .1 ]
= − ( t + 1 ) 4 t . [ 2 ( t + 1 ) 2 ] =\frac {-(t+1)}{\sqrt{4t}}. [\frac {2}{(t+1)^2}] = 4 t − ( t + 1 ) . [ ( t + 1 ) 2 2 ]
= − ( t + 1 ) 2 t . [ 2 ( t + 1 ) 2 ] =\frac{-(t+1)}{2\sqrt{t}}.[\frac{2}{(t+1)^2}] = 2 t − ( t + 1 ) . [ ( t + 1 ) 2 2 ]
= − 1 t . ( t + 1 ) =\frac{-1}{\sqrt{t}.(t+1)} = t . ( t + 1 ) − 1
Comments