Differentiate the Inverse Trigonometric functions:
1. Find πβ²β²(π) if π(π₯) = ππππ ππ(πππ π₯).
2. If πππ‘^β1(π₯π¦) β π‘ππ^β1(π¦/π₯) = 0, find ππ¦/ππ₯.
3. β(π‘) = ππππππ (π‘β1/π‘+1).
1) Here "f(x)=arcsin(cosx)"
Therefore "f'(x)=\\frac{1}{\\sqrt{1-cos^2x}}.\\frac{d}{dx}(cosx)"
"=\\frac{1}{\\sqrt {sin^2x}}.(-sinx)"
"=\\frac{(-sinx)}{sinx}"
"=-1"
"\\therefore f''(x)=0"
Hence, "f''(\\pi)=0"
2)Given that , "Cot^{-1}(xy)-tan^{-1}(\\frac {y}{x})=0" ........."(1)"
Now differentiating both side of (1) with respect to "x" ,we get
"\\implies \\frac{(-1)}{1+x^2y^2}.\\frac{d}{dx}(xy)-\\frac{1}{1+(\\frac{y}{x})^2}.\\frac{d}{dx}(\\frac{y}{x})=0"
"\\implies" "\\frac{1}{1+x^2y^2}.(y+x.\\frac{dy}{dx})+(\\frac{x^2}{x^2+y^2}).(\\frac{x\\frac{dy}{dx}-y}{x^2})=0"
"\\implies" "\\frac{y}{1+x^2y^2}+\\frac{x\\frac{dy}{dx}}{1+x^2y^2}+\\frac{x\\frac{dy}{dx}}{x^2+y^2}-\\frac{y}{x^2+y^2}=0"
"\\implies y.(\\frac{1}{1+x^2y^2}-\\frac{1}{x^2+y^2})+x\\frac{dy}{dx}.(\\frac{1}{1+x^2y^2}+\\frac{1}{x^2+y^2})=0"
"\\implies y.[\\frac{x^2+y^2-x^2y^2-1}{(1+x^2y^2)(x^2+y^2)}]+x\\frac{dy}{dx}.[\\frac{x^2+y^2+x^2y^2+1}{(1+x^2y^2)(x^2+y^2)}]=0"
"\\implies \\frac {dy}{dx}=-(\\frac {y}{x}).[\\frac {x^2+y^2-x^2y^2-1}{x^2+y^2+x^2y^2+1}]"
3) Given ,"h(t)=arccos(\\frac {t-1}{t+1})"
Then "h'(t)=\\frac{-1}{\\sqrt{1-(\\frac {t-1}{t+1})^2}}.\\frac{d}{dt}(\\frac{t-1}{t+1})"
"=\\frac{-1}{\\sqrt{1-(\\frac {t-1}{t+1})^2}}.[\\frac {(t+1). \\frac{d}{dt}(t-1)-(t-1).\\frac{d}{dt}(t+1)}{(t+1)^2}]"
"=\\frac {-(t+1)}{\\sqrt{(t+1)^2-(t-1)^2}}. [\\frac {(t+1). 1-(t-1).1}{(t+1)^2}]"
"=\\frac {-(t+1)}{\\sqrt{4t}}. [\\frac {2}{(t+1)^2}]"
"=\\frac{-(t+1)}{2\\sqrt{t}}.[\\frac{2}{(t+1)^2}]"
"=\\frac{-1}{\\sqrt{t}.(t+1)}"
Comments
Leave a comment