Question #151173

Differentiate the Inverse Trigonometric functions:

1. Find 𝑓′′(𝜋) if 𝑓(𝑥) = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑐𝑜𝑠𝑥).

2. If 𝑐𝑜𝑡^−1(𝑥𝑦) − 𝑡𝑎𝑛^−1(𝑦/𝑥) = 0, find 𝑑𝑦/𝑑𝑥.

3. ℎ(𝑡) = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑡−1/𝑡+1).


1
Expert's answer
2020-12-21T17:31:03-0500

1) Here f(x)=arcsin(cosx)f(x)=arcsin(cosx)

Therefore f(x)=11cos2x.ddx(cosx)f'(x)=\frac{1}{\sqrt{1-cos^2x}}.\frac{d}{dx}(cosx)

=1sin2x.(sinx)=\frac{1}{\sqrt {sin^2x}}.(-sinx)

=(sinx)sinx=\frac{(-sinx)}{sinx}

=1=-1

f(x)=0\therefore f''(x)=0

Hence, f(π)=0f''(\pi)=0


2)Given that , Cot1(xy)tan1(yx)=0Cot^{-1}(xy)-tan^{-1}(\frac {y}{x})=0 .........(1)(1)

Now differentiating both side of (1) with respect to xx ,we get

    (1)1+x2y2.ddx(xy)11+(yx)2.ddx(yx)=0\implies \frac{(-1)}{1+x^2y^2}.\frac{d}{dx}(xy)-\frac{1}{1+(\frac{y}{x})^2}.\frac{d}{dx}(\frac{y}{x})=0

    \implies 11+x2y2.(y+x.dydx)+(x2x2+y2).(xdydxyx2)=0\frac{1}{1+x^2y^2}.(y+x.\frac{dy}{dx})+(\frac{x^2}{x^2+y^2}).(\frac{x\frac{dy}{dx}-y}{x^2})=0

    \implies y1+x2y2+xdydx1+x2y2+xdydxx2+y2yx2+y2=0\frac{y}{1+x^2y^2}+\frac{x\frac{dy}{dx}}{1+x^2y^2}+\frac{x\frac{dy}{dx}}{x^2+y^2}-\frac{y}{x^2+y^2}=0

    y.(11+x2y21x2+y2)+xdydx.(11+x2y2+1x2+y2)=0\implies y.(\frac{1}{1+x^2y^2}-\frac{1}{x^2+y^2})+x\frac{dy}{dx}.(\frac{1}{1+x^2y^2}+\frac{1}{x^2+y^2})=0

    y.[x2+y2x2y21(1+x2y2)(x2+y2)]+xdydx.[x2+y2+x2y2+1(1+x2y2)(x2+y2)]=0\implies y.[\frac{x^2+y^2-x^2y^2-1}{(1+x^2y^2)(x^2+y^2)}]+x\frac{dy}{dx}.[\frac{x^2+y^2+x^2y^2+1}{(1+x^2y^2)(x^2+y^2)}]=0

    dydx=(yx).[x2+y2x2y21x2+y2+x2y2+1]\implies \frac {dy}{dx}=-(\frac {y}{x}).[\frac {x^2+y^2-x^2y^2-1}{x^2+y^2+x^2y^2+1}]


3) Given ,h(t)=arccos(t1t+1)h(t)=arccos(\frac {t-1}{t+1})

Then h(t)=11(t1t+1)2.ddt(t1t+1)h'(t)=\frac{-1}{\sqrt{1-(\frac {t-1}{t+1})^2}}.\frac{d}{dt}(\frac{t-1}{t+1})

=11(t1t+1)2.[(t+1).ddt(t1)(t1).ddt(t+1)(t+1)2]=\frac{-1}{\sqrt{1-(\frac {t-1}{t+1})^2}}.[\frac {(t+1). \frac{d}{dt}(t-1)-(t-1).\frac{d}{dt}(t+1)}{(t+1)^2}]

=(t+1)(t+1)2(t1)2.[(t+1).1(t1).1(t+1)2]=\frac {-(t+1)}{\sqrt{(t+1)^2-(t-1)^2}}. [\frac {(t+1). 1-(t-1).1}{(t+1)^2}]

=(t+1)4t.[2(t+1)2]=\frac {-(t+1)}{\sqrt{4t}}. [\frac {2}{(t+1)^2}]

=(t+1)2t.[2(t+1)2]=\frac{-(t+1)}{2\sqrt{t}}.[\frac{2}{(t+1)^2}]

=1t.(t+1)=\frac{-1}{\sqrt{t}.(t+1)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS