1) Here f(x)=arcsin(cosx)
Therefore f′(x)=1−cos2x1.dxd(cosx)
=sin2x1.(−sinx)
=sinx(−sinx)
=−1
∴f′′(x)=0
Hence, f′′(π)=0
2)Given that , Cot−1(xy)−tan−1(xy)=0 .........(1)
Now differentiating both side of (1) with respect to x ,we get
⟹1+x2y2(−1).dxd(xy)−1+(xy)21.dxd(xy)=0
⟹ 1+x2y21.(y+x.dxdy)+(x2+y2x2).(x2xdxdy−y)=0
⟹ 1+x2y2y+1+x2y2xdxdy+x2+y2xdxdy−x2+y2y=0
⟹y.(1+x2y21−x2+y21)+xdxdy.(1+x2y21+x2+y21)=0
⟹y.[(1+x2y2)(x2+y2)x2+y2−x2y2−1]+xdxdy.[(1+x2y2)(x2+y2)x2+y2+x2y2+1]=0
⟹dxdy=−(xy).[x2+y2+x2y2+1x2+y2−x2y2−1]
3) Given ,h(t)=arccos(t+1t−1)
Then h′(t)=1−(t+1t−1)2−1.dtd(t+1t−1)
=1−(t+1t−1)2−1.[(t+1)2(t+1).dtd(t−1)−(t−1).dtd(t+1)]
=(t+1)2−(t−1)2−(t+1).[(t+1)2(t+1).1−(t−1).1]
=4t−(t+1).[(t+1)22]
=2t−(t+1).[(t+1)22]
=t.(t+1)−1
Comments