Differentiate the Logarithmic functions:
š¦ = š„^3 šš^2 š„ + š„^2 ššš„^3 + 1
yā = 3x2 ln2x + x2 + 2x. ššš„3 + 3x
š¦ = š„3 šš2x+ š„2 ššš„3 + 1
y = x3 ln2 x+ x2 (3lnx) + 1
let x3 ln2 x= u and ln2 x= p, x3= q
then, uā = pqā + qpā
qā = 3x2
from p = ln2 x
let lnx = u
u'= 1/x
then p = u2
p' = 2u
therefore, p' = 2u. 1/x
p' = 2/x lnx
uā = ln2 x. 3x2 + x3 . 2/x lnx
uā = 3x2 ln2 x+ 2x2 lnx
yā = 3x2 ln2 x+2x2 lnx + 2x. ššš„3 + X2 (3/x)
yā = 3x2 ln2 x+ 2x2 lnx+ 2x. ššš„3 + 3x
Comments