Question #148460
Determine whether the following functions
i). f(x) = 2x3 - 3x + 1; [-2; 2]
ii). f(x) = e^x, [0; log 4]
iii). f(x) = log 2x, [1; e]
iv). f(x) = sin^(-1) x, [0; 1/2]
meet the conditions of the Mean Value Theorem on the interval. If so, nd the
point(s) guaranteed to exist by the theorem
1
Expert's answer
2020-12-04T04:57:43-0500

i) f(x)=2x33x+1f(x)=2x^3-3x+1 is continuous and differentiable for xRx\in \R as polynomial.

Then ff meets the conditions of the Mean Value Theorem on the interval [2,2][-2, 2]

f(x)=6x23=>f(c)=6c23f'(x)=6x^2-3=>f(c)=6c^2-3

f(2)=2(2)33(2)+1=9f(-2)=2(-2)^3-3(-2)+1=-9

f(2)=2(2)33(2)+1=11f(2)=2(2)^3-3(2)+1=11


11(9)=(6c23)(2(2))11-(-9)=(6c^2-3)(2-(-2))

6c23=56c^2-3=5

c2=43c^2=\dfrac{4}{3}

c1=233,c2=233c_1=-\dfrac{2\sqrt{3}}{3}, c_2=\dfrac{2\sqrt{3}}{3}

ii) f(x)=exf(x)=e^x is continuous and differentiable for xRx\in \R .

Then ff meets the conditions of the Mean Value Theorem on the interval [0,log4].[0, \log4].

Let log\log denotes natural logarithm.

f(x)=ex=>f(c)=ecf'(x)=e^x=>f(c)=e^c

f(0)=e0=1f(0)=e^0=1

f(log4)=elog4=4f(\log4)=e^{\log4}=4

41=ec(log41)4-1=e^c(\log4-1)

ec=3log41e^c=\dfrac{3}{\log4-1}

c=log(3log41)c=\log(\dfrac{3}{\log4-1})

iii) f(x)=log2(x)f(x)=\log_2(x) is continuous and differentiable for x>0x>0 .

Then ff meets the conditions of the Mean Value Theorem on the interval [1,e].[1, e].

f(x)=1xln2=>f(c)=1cln2f'(x)=\dfrac{1}{x\ln2}=>f(c)=\dfrac{1}{c\ln2}

f(1)=log2(1)=0f(1)=\log_2(1)=0

f(e)=log2(e)=1ln2f(e)=\log_2(e)=\dfrac{1}{\ln2}

1ln20=1cln2(e1)\dfrac{1}{\ln2}-0=\dfrac{1}{c\ln2}(e-1)

c=e1c=e-1

iv) f(x)=sin1xf(x)=\sin^{-1}x is continuous on [0,1/2][0, 1/2] and differentiable on (0,1/2).(0,1/2).

Then ff meets the conditions of the Mean Value Theorem on the interval [0,1/2].[0, 1/2].

f(x)=11x2=>f(c)=11c2f'(x)=\dfrac{1}{\sqrt{1-x^2}}=>f(c)=\dfrac{1}{\sqrt{1-c^2}}

f(0)=0f(0)=0

f(1/2)=π6f(1/2)=\dfrac{\pi}{6}

π60=11c2(120)\dfrac{\pi}{6}-0=\dfrac{1}{\sqrt{1-c^2}}(\dfrac{1}{2}-0)

1c2=3π\sqrt{1-c^2}=\dfrac{3}{\pi}

c2=19π2,c>0c^2=1-\dfrac{9}{\pi^2}, c>0




c=π29πc=\dfrac{\sqrt{\pi^2-9}}{\pi}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS