Let r = 6 r = 6 r = 6 inches. R and h be radius and height of the cylinder.
Let R and h are related to the r by the relation,
R = r c o s θ , h = r s i n θ R = rcos\theta, h=rsin\theta R = rcos θ , h = rs in θ where θ \theta θ is the angle between radius of the cylinder and radius of the sphere.
Then lateral surface area is given by, S = 2 π r h = 2 π R 2 s i n θ c o s θ S = 2\pi rh = 2\pi R^2 sin\theta cos\theta S = 2 π r h = 2 π R 2 s in θ cos θ
For maximum or minimum, d S d θ = 0 \frac{dS}{d\theta } = 0 d θ d S = 0
then, d S d θ = 2 π R 2 ( c o s 2 θ − s i n 2 θ ) = 0 \frac{dS}{d\theta } = 2\pi R^2(cos^2\theta-sin^2\theta) = 0 d θ d S = 2 π R 2 ( co s 2 θ − s i n 2 θ ) = 0
solving for θ \theta θ , we get, 2 π R 2 ( c o s 2 θ − s i n 2 θ ) = 0 2\pi R^2(cos^2\theta-sin^2\theta) = 0 2 π R 2 ( co s 2 θ − s i n 2 θ ) = 0
c o s 2 θ = s i n 2 θ cos^2\theta=sin^2\theta co s 2 θ = s i n 2 θ
t a n θ = 1 ⟹ θ = π 4 tan\theta = 1 \implies \theta = \frac{\pi}{4} t an θ = 1 ⟹ θ = 4 π
Then, radius of the cylinder is
r = R c o s θ = R c o s π 4 = 6 2 = 3 2 = 4.24 r = Rcos\theta = Rcos\frac{\pi}{4} = \frac{6}{\sqrt{2}} = 3\sqrt{2} = 4.24 r = R cos θ = R cos 4 π = 2 6 = 3 2 = 4.24 inches.
Height of the cylinder is,
h = R s i n θ = R s i n π 4 = 6 2 = 3 2 = 4.24 h = Rsin\theta = Rsin\frac{\pi}{4} = \frac{6}{\sqrt{2}} = 3\sqrt{2} = 4.24 h = R s in θ = R s in 4 π = 2 6 = 3 2 = 4.24 inches
Comments