To find r.ns where s is the surface of the sphere "x^2+y^2+z^2=a"
We know that "x^2+y^2+z^2=a^2"
Let "a=1" because "a^2=a=1"
We will compute the surface integral "\\intop \\intop_s x^2 \\ ds" where s is the unit sphere.
Apply the parametric representation
That is
"r(\\phi, \\theta)=sin\\ \\phi\\ cos\\ \\theta\\ i+sin\\ \\phi\\ sin\\ \\theta\\ j+cos\\ \\phi\\ k"
We then compute
"|r_{\\phi} \\times r_{\\theta}|=sin\\ \\theta\\\\\n\\therefore \\intop \\intop_Sx^2 dS\\\\\n\\implies \\intop \\intop_D(sin \\phi cos \\theta)^2|r_{\\phi} \\times r_{\\theta}|dA\\\\\n\\implies \\intop_0^{2 \\pi} \\intop_0^{\\pi}(sin^2 \\phi cos^2 \\theta sin \\phi)d \\phi d\\theta\\\\\n\\implies \\intop_0^{2 \\pi}cos^2 \\theta d\\theta \\intop_0^{\\pi}(sin^3 \\phi )d \\phi\\\\\n\\implies \\intop_0^{2 \\pi}\\frac12(1+cos2 \\theta) d\\theta \\intop_0^{\\pi}(sin \\phi-sin \\phi\\ cos^2 \\phi )d \\phi\\\\\n\\implies \\frac12[\\theta+\\frac12 sin \\theta]_0^{2\\pi}[-cos \\phi + \\frac13cos \\phi]_0^{\\pi}\\\\\n\\therefore \\frac{4 \\pi}{3}"
Comments
Dear Samir, we are solving this question.
Sir please solve this question
Leave a comment