SolutionTo find r.ns where s is the surface of the sphere x2+y2+z2=a
We know that x2+y2+z2=a2
Let a=1 because a2=a=1
We will compute the surface integral ∫∫sx2 ds where s is the unit sphere.
Apply the parametric representation
x=sin\ \theta\ cos\ \phi;\ y=sin\ \theta\ sin\ \phi;\ z=cos\ \phi\\
0 \le \phi \le\pi,\ 0 \le \theta \le2\pi,\That is
r(ϕ,θ)=sin ϕ cos θ i+sin ϕ sin θ j+cos ϕ k
We then compute
∣rϕ×rθ∣=sin θ∴∫∫Sx2dS⟹∫∫D(sinϕcosθ)2∣rϕ×rθ∣dA⟹∫02π∫0π(sin2ϕcos2θsinϕ)dϕdθ⟹∫02πcos2θdθ∫0π(sin3ϕ)dϕ⟹∫02π21(1+cos2θ)dθ∫0π(sinϕ−sinϕ cos2ϕ)dϕ⟹21[θ+21sinθ]02π[−cosϕ+31cosϕ]0π∴34π
Comments
Dear Samir, we are solving this question.
Sir please solve this question