Question #148234
Find r.ns where s is the surface of the sphere x^2+y^2+z^2=a
1
Expert's answer
2020-12-03T19:14:57-0500
SolutionSolution

To find r.ns where s is the surface of the sphere x2+y2+z2=ax^2+y^2+z^2=a

We know that x2+y2+z2=a2x^2+y^2+z^2=a^2

Let a=1a=1 because a2=a=1a^2=a=1

We will compute the surface integral sx2 ds\intop \intop_s x^2 \ ds where s is the unit sphere.


Apply the parametric representation


x=sin\ \theta\ cos\ \phi;\ y=sin\ \theta\ sin\ \phi;\ z=cos\ \phi\\ 0 \le \phi \le\pi,\ 0 \le \theta \le2\pi,\

That is

r(ϕ,θ)=sin ϕ cos θ i+sin ϕ sin θ j+cos ϕ kr(\phi, \theta)=sin\ \phi\ cos\ \theta\ i+sin\ \phi\ sin\ \theta\ j+cos\ \phi\ k

We then compute

rϕ×rθ=sin θSx2dS    D(sinϕcosθ)2rϕ×rθdA    02π0π(sin2ϕcos2θsinϕ)dϕdθ    02πcos2θdθ0π(sin3ϕ)dϕ    02π12(1+cos2θ)dθ0π(sinϕsinϕ cos2ϕ)dϕ    12[θ+12sinθ]02π[cosϕ+13cosϕ]0π4π3|r_{\phi} \times r_{\theta}|=sin\ \theta\\ \therefore \intop \intop_Sx^2 dS\\ \implies \intop \intop_D(sin \phi cos \theta)^2|r_{\phi} \times r_{\theta}|dA\\ \implies \intop_0^{2 \pi} \intop_0^{\pi}(sin^2 \phi cos^2 \theta sin \phi)d \phi d\theta\\ \implies \intop_0^{2 \pi}cos^2 \theta d\theta \intop_0^{\pi}(sin^3 \phi )d \phi\\ \implies \intop_0^{2 \pi}\frac12(1+cos2 \theta) d\theta \intop_0^{\pi}(sin \phi-sin \phi\ cos^2 \phi )d \phi\\ \implies \frac12[\theta+\frac12 sin \theta]_0^{2\pi}[-cos \phi + \frac13cos \phi]_0^{\pi}\\ \therefore \frac{4 \pi}{3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
02.12.20, 21:23

Dear Samir, we are solving this question.

Samir
02.12.20, 07:11

Sir please solve this question

LATEST TUTORIALS
APPROVED BY CLIENTS