Question #148339
If one side of a rectangular field is to have a river as a natural boundary, find the dimensions
of the largest rectangular field that can be enclosed by using 240 m of fence for the other three sides.
1
Expert's answer
2020-12-09T08:21:10-0500

The Perimeter PP of the field is given as:

P=2W+Lwhere L and W are length and width240=2W+LL=2402WA=W×LA=W(2402W)A=240W2W2A=2404Wset A’ to 00=2404WW=240/4=60A=4This implies that W=60 is the maximum valueSubstitute 60 for W in L=240-2WL=240120L=120mP=2W+L\\ \text{where L and W are length and width}\\ 240=2W+L\\ L=240-2W\\ A=W \times L\\ A=W(240-2W)\\ A=240W-2W^2\\ A'=240-4W\\ \text{set A' to 0}\\ 0=240-4W\\ W=240/4=60\\ A''=-4\\ \text{This implies that W=60 is the maximum value}\\\text{Substitute 60 for W in L=240-2W}\\ L=240-120\\ L=120m


Hence the dimension of the largest rectangle field will be 60m×120m60m \times 120m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS