The Perimeter "P" of the field is given as:
"P=2W+L\\\\ \\text{where L and W are length and width}\\\\\n240=2W+L\\\\\nL=240-2W\\\\\nA=W \\times L\\\\\nA=W(240-2W)\\\\\nA=240W-2W^2\\\\\nA'=240-4W\\\\\n\\text{set A' to 0}\\\\\n0=240-4W\\\\\nW=240\/4=60\\\\\nA''=-4\\\\\n\\text{This implies that W=60 is the maximum value}\\\\\\text{Substitute 60 for W in L=240-2W}\\\\\nL=240-120\\\\\nL=120m"
Hence the dimension of the largest rectangle field will be "60m \\times 120m".
Comments
Leave a comment