Answer to Question #138346 in Calculus for Promise Omiponle

Question #138346
If f(x,y,z)=xe^(2y)sin(9z), then the gradient is

∇f(x,y,z)=
1
Expert's answer
2020-10-19T15:43:45-0400

f(x,y,z)=f(x,y,z)xi+f(x,y,z)yj+f(x,y,z)zkf(x,y,z)x=(xe2ysin(9z))x=e2ysin(9z)f(x,y,z)y=(xe2ysin(9z))y=2xe2ysin(9z)f(x,y,z)z=(xe2ysin(9z))z=9xe2ycos(9z)f(x,y,z)=e2ysin(9z)i+2xe2ysin(9z)j+9xe2ycos(9z)kf(x,y,z)=e2y(sin(9z)i+2xsin(9z)j+9xcos(9z)k)    f(x,y,z)=e2y(sin(9z),2xsin(9z),9xcos(9z))\displaystyle \nabla f(x, y, z) = \frac{\partial f(x, y, z)}{\partial x} \textbf{i} + \frac{\partial f(x, y, z)}{\partial y} \textbf{j} + \frac{\partial f(x, y, z)}{\partial z} \textbf{k} \\ \frac{\partial f(x, y, z)}{\partial x} = \frac{\partial (xe^{2y}\sin(9z))}{\partial x} = e^{2y}\sin(9z) \\ \frac{\partial f(x, y, z)}{\partial y} = \frac{\partial (xe^{2y}\sin(9z))}{\partial y} = 2xe^{2y}\sin(9z)\\ \frac{\partial f(x, y, z)}{\partial z} = \frac{\partial (xe^{2y}\sin(9z))}{\partial z} = 9xe^{2y}\cos(9z)\\ \therefore \nabla f(x, y, z) = e^{2y}\sin(9z) \textbf{i} + 2xe^{2y}\sin(9z)\textbf{j} + 9xe^{2y}\cos(9z)\textbf{k} \\ \therefore \nabla f(x, y, z) = e^{2y}(\sin(9z) \textbf{i} + 2x\sin(9z)\textbf{j} + 9x\cos(9z)\textbf{k})\\ \implies \nabla f(x, y, z) = e^{2y}(\sin(9z), 2x\sin(9z), 9x\cos(9z))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment