"\\displaystyle\n\n\\nabla f(x, y, z) = \\frac{\\partial f(x, y, z)}{\\partial x} \\textbf{i} + \\frac{\\partial f(x, y, z)}{\\partial y} \\textbf{j} + \\frac{\\partial f(x, y, z)}{\\partial z} \\textbf{k} \\\\\n\n\n\\frac{\\partial f(x, y, z)}{\\partial x} = \\frac{\\partial (xe^{2y}\\sin(9z))}{\\partial x} = e^{2y}\\sin(9z) \\\\\n\n\\frac{\\partial f(x, y, z)}{\\partial y} = \\frac{\\partial (xe^{2y}\\sin(9z))}{\\partial y} = 2xe^{2y}\\sin(9z)\\\\\n\n\\frac{\\partial f(x, y, z)}{\\partial z} = \\frac{\\partial (xe^{2y}\\sin(9z))}{\\partial z} = 9xe^{2y}\\cos(9z)\\\\\n\n\\therefore \\nabla f(x, y, z) = e^{2y}\\sin(9z) \\textbf{i} + 2xe^{2y}\\sin(9z)\\textbf{j} + 9xe^{2y}\\cos(9z)\\textbf{k} \\\\\n\n\\therefore \\nabla f(x, y, z) = e^{2y}(\\sin(9z) \\textbf{i} + 2x\\sin(9z)\\textbf{j} + 9x\\cos(9z)\\textbf{k})\\\\\n\n\\implies \\nabla f(x, y, z) = e^{2y}(\\sin(9z), 2x\\sin(9z), 9x\\cos(9z))"
Comments
Leave a comment