Question #138339
Find the directional derivative of the function f(x, y, z) = 2xy-yz at the point(1,1,1) in the direction of u=<1,2,3>. Is there a direction (^v) in which f(x, y, z) has a directional derivative D^vf=-3 at the point (1,-1,1)?
1
Expert's answer
2020-10-18T17:34:25-0400

You

16:46


fx(x,y,z)=2y,fy(x,y,z)=2xz,fz(x,y,z)=y.f_x(x,y,z)= 2y, f_y(x,y,z)= 2x-z , f_z(x,y,z)=-y.. Since the partial derivatives are continuous we can easily find directional derivatives through dot product. point= (1,1,1).(1,1,1). Hence fx=2,fy=1,fz=1f_x=2, f_y=1, f_z=-1 at the given point. Unit vector= 112+22+32(1,2,3)=(114,214,314)\frac{1}{\sqrt{1^2+2^2+3^2 }} (1,2,3)=(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}} ) Hence directional derivative = 2.114+1.2141.314=114.2.\frac{1}{\sqrt{14}}+1.\frac{2}{\sqrt{14}}-1.\frac{3}{\sqrt{14}}=\frac{1}{\sqrt{14}}.

In the next case let the unit vector along the direction be (a,b,c).(a,b,c). Hence a2+b2+c2=1a^2+b^2+c^2=1 and 2a+b+c=3.-2a+b+c=-3. Hence (b+c)2=(2a3)2.(b+c)^2=(2a-3)^2. Hence 2bc=(2a3)2(1a2)2bc= (2a-3)^2-(1-a^2) . Hence (bc)2=1a2(2a3)2+1a2=12a76a2.(b-c)^2=1-a^2-(2a-3)^2+1-a^2=12a-7-6a^2.

R.H.S.= [1+6(a1)2]<0.-[1+6(a-1)^2] <0 \Rightarrow\Leftarrow . Hence no such direction exists.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS