∫x2e3xdx=∫x2de3x3=\intop x^2e^{3x}dx=\intop x^2d\frac{e^{3x}}{3}=∫x2e3xdx=∫x2d3e3x=
=x2e3x3−∫e3x3dx2=x2e3x3−∫2xe3x3dx==\frac{x^{2}e^{3x}}{3}-\intop\frac{e^{3x}}{3}dx^2=\frac{x^{2}e^{3x}}{3}-\intop\frac{2xe^{3x}}{3}dx==3x2e3x−∫3e3xdx2=3x2e3x−∫32xe3xdx=
=x2e3x3−23∫ xe3xdx=x2e3x3−23∫xde3x3==\frac{x^{2}e^{3x}}{3}-\frac{2}{3}\intop\ xe^{3x}dx=\frac{x^{2}e^{3x}}{3}-\frac{2}{3}\intop xd\frac{e^{3x}}{3}==3x2e3x−32∫ xe3xdx=3x2e3x−32∫xd3e3x=
=x2e3x3−23(xe3x3−∫e3x3dx)==\frac{x^{2}e^{3x}}{3}-\frac{2}{3}(\frac{xe^{3x}}{3}-\intop\frac{e^{3x}}{3}dx)==3x2e3x−32(3xe3x−∫3e3xdx)=
=x2e3x3−2xe3x9+23⋅e3x9+C=(9x2−6x+2)e3x27+C=\frac{x^{2}e^{3x}}{3}-\frac{2xe^{3x}}{9}+\frac{2}{3}\cdot\frac{e^{3x}}{9}+C=\frac{(9x^{2}-6x+2)e^{3x}}{27}+C=3x2e3x−92xe3x+32⋅9e3x+C=27(9x2−6x+2)e3x+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment