Answer to Question #138060 in Calculus for Zeeshan

Question #138060
solve the following question step bt step in detail.

∫ x²e³ˣ dx
1
Expert's answer
2020-10-13T18:56:54-0400

Use integration by parts:

x2e3xdx=x2de3x3=\intop x^2e^{3x}dx=\intop x^2d\frac{e^{3x}}{3}=


=x2e3x3e3x3dx2=x2e3x32xe3x3dx==\frac{x^{2}e^{3x}}{3}-\intop\frac{e^{3x}}{3}dx^2=\frac{x^{2}e^{3x}}{3}-\intop\frac{2xe^{3x}}{3}dx=


=x2e3x323 xe3xdx=x2e3x323xde3x3==\frac{x^{2}e^{3x}}{3}-\frac{2}{3}\intop\ xe^{3x}dx=\frac{x^{2}e^{3x}}{3}-\frac{2}{3}\intop xd\frac{e^{3x}}{3}=


=x2e3x323(xe3x3e3x3dx)==\frac{x^{2}e^{3x}}{3}-\frac{2}{3}(\frac{xe^{3x}}{3}-\intop\frac{e^{3x}}{3}dx)=


=x2e3x32xe3x9+23e3x9+C=(9x26x+2)e3x27+C=\frac{x^{2}e^{3x}}{3}-\frac{2xe^{3x}}{9}+\frac{2}{3}\cdot\frac{e^{3x}}{9}+C=\frac{(9x^{2}-6x+2)e^{3x}}{27}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment