"\\displaystyle\\textsf{Let}\\hspace{0.1cm}I = \\int (e^{x} + e^{-x})^{\\frac{1}{4}} (e^{x} - e^{-x}) \\hspace{0.1cm}\\mathrm{d}x\\\\\n\n\\displaystyle\\textsf{Let}\\hspace{0.1cm}\nu = e^{x} + e^{-x}\\\\\n\n\\frac{\\mathrm{d}u}{\\mathrm{d}x} = e^{x} - e^{-x}\\\\\n\n\n\\displaystyle\\frac{\\mathrm{d}u}{e^{x} - e^{-x}} = \\mathrm{d}x\\\\\n\n\n\\displaystyle I = \\int u^{\\frac{1}{4}} (\\cancel{e^{x} - e^{-x}}) \\frac{\\mathrm{d}u}{\\cancel{e^{x} - e^{-x}}}\\\\\n\n\n\n\\displaystyle\\begin{aligned}\nI &= \\int u^{\\frac{1}{4}}\\hspace{0.1cm}\\mathrm{d}u \\\\&= \\frac{4u^{\\frac{5}{4}}}{5} + C\n\\end{aligned}\\\\\n\n\n\\therefore I = \\frac{4(e^{x} + e^{-x})^{\\frac{5}{4}}}{5} + C"
Comments
Leave a comment