Let I = ∫ ( e x + e − x ) 1 4 ( e x − e − x ) d x Let u = e x + e − x d u d x = e x − e − x d u e x − e − x = d x I = ∫ u 1 4 ( e x − e − x ) d u e x − e − x I = ∫ u 1 4 d u = 4 u 5 4 5 + C ∴ I = 4 ( e x + e − x ) 5 4 5 + C \displaystyle\textsf{Let}\hspace{0.1cm}I = \int (e^{x} + e^{-x})^{\frac{1}{4}} (e^{x} - e^{-x}) \hspace{0.1cm}\mathrm{d}x\\
\displaystyle\textsf{Let}\hspace{0.1cm}
u = e^{x} + e^{-x}\\
\frac{\mathrm{d}u}{\mathrm{d}x} = e^{x} - e^{-x}\\
\displaystyle\frac{\mathrm{d}u}{e^{x} - e^{-x}} = \mathrm{d}x\\
\displaystyle I = \int u^{\frac{1}{4}} (\cancel{e^{x} - e^{-x}}) \frac{\mathrm{d}u}{\cancel{e^{x} - e^{-x}}}\\
\displaystyle\begin{aligned}
I &= \int u^{\frac{1}{4}}\hspace{0.1cm}\mathrm{d}u \\&= \frac{4u^{\frac{5}{4}}}{5} + C
\end{aligned}\\
\therefore I = \frac{4(e^{x} + e^{-x})^{\frac{5}{4}}}{5} + C Let I = ∫ ( e x + e − x ) 4 1 ( e x − e − x ) d x Let u = e x + e − x d x d u = e x − e − x e x − e − x d u = d x I = ∫ u 4 1 ( e x − e − x ) e x − e − x d u I = ∫ u 4 1 d u = 5 4 u 4 5 + C ∴ I = 5 4 ( e x + e − x ) 4 5 + C
Comments