LetI=∫(ex+e−x)14(ex−e−x)dxLetu=ex+e−xdudx=ex−e−xduex−e−x=dxI=∫u14(ex−e−x)duex−e−xI=∫u14du=4u545+C∴I=4(ex+e−x)545+C\displaystyle\textsf{Let}\hspace{0.1cm}I = \int (e^{x} + e^{-x})^{\frac{1}{4}} (e^{x} - e^{-x}) \hspace{0.1cm}\mathrm{d}x\\ \displaystyle\textsf{Let}\hspace{0.1cm} u = e^{x} + e^{-x}\\ \frac{\mathrm{d}u}{\mathrm{d}x} = e^{x} - e^{-x}\\ \displaystyle\frac{\mathrm{d}u}{e^{x} - e^{-x}} = \mathrm{d}x\\ \displaystyle I = \int u^{\frac{1}{4}} (\cancel{e^{x} - e^{-x}}) \frac{\mathrm{d}u}{\cancel{e^{x} - e^{-x}}}\\ \displaystyle\begin{aligned} I &= \int u^{\frac{1}{4}}\hspace{0.1cm}\mathrm{d}u \\&= \frac{4u^{\frac{5}{4}}}{5} + C \end{aligned}\\ \therefore I = \frac{4(e^{x} + e^{-x})^{\frac{5}{4}}}{5} + CLetI=∫(ex+e−x)41(ex−e−x)dxLetu=ex+e−xdxdu=ex−e−xex−e−xdu=dxI=∫u41(ex−e−x)ex−e−xduI=∫u41du=54u45+C∴I=54(ex+e−x)45+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments