Given expression is "f(x) = \\frac{1}{(6-x)^7}"
First derivative, "f'(x) = \\frac{7}{(x-6)^8}"
Second derivative "f''(x) = -\\frac{56}{(x-6)^9}"
Third derivative "f'''(x) = \\frac{504}{(x-6)^{10}}"
Fourth derivative "f''''(x) = -\\frac{5040}{(x-6)^{11}}"
and so on .........
Value of f(x) at x=4, "f(4) = \\frac{1}{128}"
Value of first derivative at x=4, "f'(4) = \\frac{7}{256}"
Value of second derivative at x=4, "f''(4) = \\frac{7}{64}"
Value of third derivative at x=4, "f'''(4) = \\frac{63}{128}"
Value of fourth derivative at x=4, "f''''(4) = \\frac{315}{128}"
Taylor series of f(x)
"f(x) = f(4) + \\frac{f'(4)}{1!}(x-4) + \\frac{f''(4)}{2!}(x-4)^2 + \\frac{f'''(4)}{3!}(x-4)^3 + \\frac{f''''(4)}{4!}(x-4)^4+ ....."
"f(x) = \\frac{1}{128} + \\frac{7}{256}(x-4) + \\frac{7}{128}(x-4)^2 + \\frac{21}{259}(x-4)^3 + \\frac{105}{1024}(x-4)^4 + ......"
Comments
Leave a comment