Given expression is f(x)=(6−x)71
First derivative, f′(x)=(x−6)87
Second derivative f′′(x)=−(x−6)956
Third derivative f′′′(x)=(x−6)10504
Fourth derivative f′′′′(x)=−(x−6)115040
and so on .........
Value of f(x) at x=4, f(4)=1281
Value of first derivative at x=4, f′(4)=2567
Value of second derivative at x=4, f′′(4)=647
Value of third derivative at x=4, f′′′(4)=12863
Value of fourth derivative at x=4, f′′′′(4)=128315
Taylor series of f(x)
f(x)=f(4)+1!f′(4)(x−4)+2!f′′(4)(x−4)2+3!f′′′(4)(x−4)3+4!f′′′′(4)(x−4)4+.....
f(x)=1281+2567(x−4)+1287(x−4)2+25921(x−4)3+1024105(x−4)4+......
Comments