(1)The Taylor series ofsinxaboutx=0issinx=k=0∑∞(2k+1)!x2k+1(−1)ksinx=x4−3!x3+5!x5−7!x7+9!x9−11!x11+...sin(x4)=x4−3!(x4)3+5!(x4)5−7!(x4)7+9!(x4)9−11!(x4)11+...sin(x4)=x4−3!x12+5!x20−7!x28+9!x36−11!x44+...(2)The Taylor series ofcosxaboutx=0iscosx=k=0∑∞(2k)!x2k(−1)kcosx=1−2!x2+4!x4−6!x6+8!x8−10!x10+...cos(7x5)=1−2!(7x5)2+4!(7x5)4−6!(7x5)6+8!(7x5)8−10!(7x5)10+...6x2cos(7x5)=6x2−2!6.x12.72+4!6.x22.74−6!6.x32.76+8!6.x42.78−10!6.x52.710+...
Comments
Leave a comment