"(1)\\\\\n\n\\textsf{The Taylor series of}\\hspace{0.1cm}\\sin{x} \\hspace{0.1cm} \\textsf{about}\\hspace{0.1cm} x = 0 \\hspace{0.1cm} \\textsf{is}\\\\\n\n\\displaystyle\\sin{x} = \\sum_{k = 0}^\\infty\\frac{x^{2k + 1} (-1)^k}{(2k + 1)!} \\\\\n\n\n\\displaystyle\\sin{x} = x^4 - \\frac{x^3}{3!} + \\frac{x^5}{5!} - \\frac{x^7}{7!} + \\frac{x^9}{9!} - \\frac{x^{11}}{11!} +...\\\\\n\n \n\\displaystyle\\sin(x^4) = x^4 - \\frac{(x^4)^3}{3!} + \\frac{(x^4)^5}{5!} - \\frac{(x^4)^7}{7!} + \\frac{(x^4)^9}{9!} - \\frac{(x^4)^{11}}{11!} +...\\\\\n\n\\displaystyle\\sin(x^4) = x^4 - \\frac{x^{12}}{3!} + \\frac{x^{20}}{5!} - \\frac{x^{28}}{7!} + \\frac{x^{36}}{9!} - \\frac{x^{44}}{11!} +...\\\\\n\n\n\n(2)\\\\\n\n\\textsf{The Taylor series of}\\hspace{0.1cm}\\cos{x} \\hspace{0.1cm} \\textsf{about}\\hspace{0.1cm} x = 0 \\hspace{0.1cm} \\textsf{is}\\\\\n\n\\displaystyle\\cos{x} = \\sum_{k = 0}^\\infty\\frac{x^{2k} (-1)^k}{(2k)!} \\\\\n\n\n\\displaystyle\\cos{x} = 1 - \\frac{x^2}{2!} + \\frac{x^4}{4!} - \\frac{x^6}{6!} + \\frac{x^8}{8!} - \\frac{x^{10}}{10!} +...\\\\\n\n \\displaystyle\\cos(7x^5) = 1 - \\frac{(7x^5)^2}{2!} + \\frac{(7x^5)^4}{4!} - \\frac{(7x^5)^6}{6!} + \\frac{(7x^5)^8}{8!} - \\frac{(7x^5)^{10}}{10!} +...\\\\\n\n\n \\displaystyle 6x^2\\cos(7x^5) = 6x^2 - \\frac{6.x^{12}.7^2}{2!} + \\frac{6.x^{22}.7^4}{4!} - \\frac{6.x^{32}.7^6}{6!} + \\frac{6.x^{42}.7^8}{8!} - \\frac{6.x^{52}.7^{10}}{10!} +...\\\\"
Comments
Leave a comment