∬2xy dx dy\large\iint2xy\,dx\,dy∬2xydxdy =
∫(∫2xy dy)dx\large\int(\int2xy\,dy)dx∫(∫2xydy)dx =
∫((2×x×y1+12)+c1)dx\large\int((2\times x\times\dfrac{y^{1+1}}{2})+c_1)dx∫((2×x×2y1+1)+c1)dx =
∫(xy2+c1)dx\large\int (xy^2+c_1)dx∫(xy2+c1)dx =
∫xy2+c1 dx\large\int xy^2+c_1\,\,dx∫xy2+c1dx =
∫xy2 dx+∫c1 dx\large\int xy^2\,dx+\int c_1\,dx∫xy2dx+∫c1dx =
(∫xy2 dx)+(c1∫dx)\large(\int xy^2\,dx)+(c_1\int dx)(∫xy2dx)+(c1∫dx) =
(x1+12×y2)+(c1×x)+c2\large(\dfrac{x^{1+1}}{2} \times y^2 ) +(c_1\times x) + c_2(2x1+1×y2)+(c1×x)+c2 =
x2y22 +c1x+c2\large\dfrac{x^2y^2}{2} \, + c_1x+c_22x2y2+c1x+c2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments