"\\large\\int^2_0 xcosx\\,dx ="
Using Integration by parts formula,
"\\large\\int Udv = UV - \\int Vdu"
Comparing "\\large\\int^2_0 xcosx\\,dx" and "\\large\\int Udv"
"U = x" and "dv = cosx \\,dx"
Since,
"U = x, \\quad \\dfrac{du}{dx} = 1"
"\\therefore du = dx"
"[U = x\\,\\,, du =dx]"
Since,
"dv = cosx\\,dx, \\quad \\dfrac{dv}{dx}= cosx"
Integrating,
"\\therefore V = sinx"
"[V =sinx\\,\\,, dv = cosx\\,dx]"
"\\begin{aligned}\n\n\n\n\\end{aligned}" "\\begin{aligned}\n\nfrom, \\int Udv &= UV - \\int Vdu\\\\\\\\\n\\int^a_b Udv &= {\\large[UV]^a_b} - \\int^a_b Vdu\\\\\\\\\n\\int^2_0xcosx\\,dx &= [xsinx]^a_b- \\int^2_0sinx\\,dx\\\\\\\\\n\\int^2_0xcosx\\,dx &= {\\large[xsinx]^2_0}- {\\large[-cosx]^2_0}\\\\\\\\\n\\int^2_0xcosx\\,dx &= [(2sin(2))-(2sin(0))]- [(-cos(2))-(-cos(0))]\\\\\\\\\n\\int^2_0xcosx\\,dx &= [2sin2-(0)]- [-cos2-(-1)]\\\\\\\\\n\\int^2_0xcosx\\,dx &= 2sin2- [-cos2+1]\\\\\\\\\n\\int^2_0xcosx\\,dx &= 2sin2 +cos2 -1\n\n\\end{aligned}"
"\\Large\\therefore \\int^2_0xcosx\\,dx\\space=\\space 2sin2 +cos2 -1 \\space \\approx \\space0.4024"
Comments
Leave a comment