∫02xcosxdx=
Using Integration by parts formula,
∫Udv=UV−∫Vdu
Comparing ∫02xcosxdx and ∫Udv
U=x and dv=cosxdx
Since,
U=x,dxdu=1
∴du=dx
[U=x,du=dx]
Since,
dv=cosxdx,dxdv=cosx
Integrating,
∴V=sinx
[V=sinx,dv=cosxdx]
from,∫Udv∫baUdv∫02xcosxdx∫02xcosxdx∫02xcosxdx∫02xcosxdx∫02xcosxdx∫02xcosxdx=UV−∫Vdu=[UV]ba−∫baVdu=[xsinx]ba−∫02sinxdx=[xsinx]02−[−cosx]02=[(2sin(2))−(2sin(0))]−[(−cos(2))−(−cos(0))]=[2sin2−(0)]−[−cos2−(−1)]=2sin2−[−cos2+1]=2sin2+cos2−1
∴∫02xcosxdx = 2sin2+cos2−1 ≈ 0.4024
Comments