Question #138061
Solve the following question step by step in detail.
∫²₀ xcosx dx
1
Expert's answer
2020-10-14T18:08:20-0400

02xcosxdx=\large\int^2_0 xcosx\,dx =


Using Integration by parts formula,

Udv=UVVdu\large\int Udv = UV - \int Vdu


Comparing 02xcosxdx\large\int^2_0 xcosx\,dx and Udv\large\int Udv


U=xU = x and dv=cosxdxdv = cosx \,dx


Since,

U=x,dudx=1U = x, \quad \dfrac{du}{dx} = 1


du=dx\therefore du = dx


[U=x,du=dx][U = x\,\,, du =dx]




Since,

dv=cosxdx,dvdx=cosxdv = cosx\,dx, \quad \dfrac{dv}{dx}= cosx

Integrating,

V=sinx\therefore V = sinx


[V=sinx,dv=cosxdx][V =sinx\,\,, dv = cosx\,dx]




\begin{aligned} \end{aligned} from,Udv=UVVdubaUdv=[UV]babaVdu02xcosxdx=[xsinx]ba02sinxdx02xcosxdx=[xsinx]02[cosx]0202xcosxdx=[(2sin(2))(2sin(0))][(cos(2))(cos(0))]02xcosxdx=[2sin2(0)][cos2(1)]02xcosxdx=2sin2[cos2+1]02xcosxdx=2sin2+cos21\begin{aligned} from, \int Udv &= UV - \int Vdu\\\\ \int^a_b Udv &= {\large[UV]^a_b} - \int^a_b Vdu\\\\ \int^2_0xcosx\,dx &= [xsinx]^a_b- \int^2_0sinx\,dx\\\\ \int^2_0xcosx\,dx &= {\large[xsinx]^2_0}- {\large[-cosx]^2_0}\\\\ \int^2_0xcosx\,dx &= [(2sin(2))-(2sin(0))]- [(-cos(2))-(-cos(0))]\\\\ \int^2_0xcosx\,dx &= [2sin2-(0)]- [-cos2-(-1)]\\\\ \int^2_0xcosx\,dx &= 2sin2- [-cos2+1]\\\\ \int^2_0xcosx\,dx &= 2sin2 +cos2 -1 \end{aligned}



02xcosxdx = 2sin2+cos21  0.4024\Large\therefore \int^2_0xcosx\,dx\space=\space 2sin2 +cos2 -1 \space \approx \space0.4024



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS