"\\displaystyle\\textsf{Since}\\, f \\, \\textsf{is a polynomial, it is continuous on the closed,}\\\\\n\\textsf{bounded set}\\, T,\\, \\textsf{where}\\, T\\, \\textsf{is the region in the triangle.} \\\\\n\n\\textsf{The first order partial derivatives are} \n\\\\ f_x(x, y) = y - 1\\, \\textsf{and}\\, f_y(x, y) = x - 2 \\\\\n\n\\textsf{Thus, the only critical points in the interior of} \\,T\\,\\textsf{is} \\,(2, 1) \\\\\n\n\\textsf{The boundary of}\\,T \\, \\textsf{consists of three line segments,}\\\\\n L_1, L_2 \\, \\textsf{and} L_3. \\\\\n\n\n\\textsf{On}\\, L_1,\\, \\textsf{we have}\\, x = 1, \\\\\n\nf(1, y) = 3 + y - 1 - 2y = 2 - y \\\\\n\n\\textsf{The function}\\, f \\, \\textsf{is a decreasing function of}\\,y \\\\\n\\textsf{along}\\, L_1 \\, \\textsf{from}\\, (1, 0) \\, \\textsf{to}\\, (1, 4)\\\\\n\n\\textsf{Its maximum value is}\\, f(1, 0)\\, \\textsf{and its minimum value is}\\,f(1, 4) \\\\\n\n\\textsf{On}\\, L_2, \\, \\textsf{we have} \\,y = 0, \\\\\n\nf(1, y) = 3 - x\\\\\n\n\\textsf{The function}\\, f\\, \\textsf{is a decreasing function of}\\, x \\textsf{along}\\\\\nL_2\\, \\textsf{from} (1, 0)\\, \\textsf{to}\\,(5, 0) \\\\\n\n\\textsf{Its maximum value is}\\, f(1, 0)\\, \\textsf{and its minimum value is}\\, f(5, 0) \\\\\n\n\n\\textsf{Deriving an equation for line}\\, L_3\\\\\n\n\\textsf{The equation can be derived}\\\\\\textsf{from the formula for the equation}\\\\ \\textsf{of a straight line passing through}\\\\\n\\textsf{one point with a gradient which is given by} \\\\\n\n\\frac{y - y_1}{x - x_1} = m(x - x_1) \\\\\n \n\\textsf{since the line is passing through}\\, (1, 4) \\, \\textsf{and}\\, (5, 0) \\\\\n\nm = \\frac{0 - 4}{5 - 1} = \\frac{-4}{4} = -1 \\\\\n\n\\frac{y - 0}{x - 5} = -1 \\\\\n\n\\therefore y = 5 - x \\\\\n\nf(x, 5 - x) = 3 + x(5 - x - 1) - 2(5 - x) \\\\\n\nf(x, 5 - x) = 3 + 4x - x^2 - 10 + 2x = 6x - x^2 - 7 \\\\\n\nf_x(x, 5 - x) = 6 - 2x = 0, \\implies x = 3\\, \\textsf{and so},\\, (3, 2)\\, \\textsf{is a critical point.} \\\\\n\n\\textsf{The values of the function at the}\\\\\\textsf{critical points is given by;}\\\\\n\n\\begin{aligned}\nf(3, 2) &= 3 + 3(2 - 1) - 2(3) = 0 \\\\\nf(1, 0) &= 3 - 1 = 2\\\\\n f(5, 0) &= 3 - 5 = -2\\\\\nf(1, 4) &= 3 + 1(4 - 1) - 2(4) = -2\\\\\nf(2, 1) &= 3 + 2(1 - 1) - 2(1) = 1\n\\end{aligned} \\\\\n\n\\textsf{We can hence conclude that}\\, -2\\, \\textsf{is the absolute }\\\\\n\\textsf{minimum of the function}\\, f(x, y) = 3 + x(y - 1) - 2y\\, \\textsf{on the closed}\\\\\n\\textsf{triangular region with vertices}\\, (1,0), (5, 0) \\,\\textsf{and}\\, (1, 4)."
Comments
Leave a comment