Let us determine the coordinates of the unit vector that is parallel to "\\lbrace1,2,3 \\rbrace" :
"\\vec{s} = \\lbrace c, 2c, 3c\\rbrace." The modulus is 1, so "\\sqrt{c^2+(2c)^2+(3c)^2} = 1 \\Rightarrow c = \\dfrac{1}{\\sqrt{14}}" .
Therefore, the directional derivative in (0,0,0) will be
"{\\displaystyle \\nabla _{\\mathbf {e} }{f}(\\mathbf {x} )={\\frac {\\partial f}{\\partial x}}e_{1}+\\frac {\\partial f}{\\partial y}e_{2} +{\\frac {\\partial f}{\\partial z}}e_{3}} = e^x\\cos(y-z)\\cdot c - e^x\\sin(y-z)\\cdot 2c + e^x\\sin(y-z)\\cdot 3c= e^x\\cdot c\\cdot\\big(\\cos(y-z) - 2\\sin(y-z)+3\\sin(y-z)\\big) = e^x\\cdot c\\cdot(\\cos(y-z)+\\sin(y-z)) = e^0\\cdot \\dfrac{1}{\\sqrt{14}} \\cdot\\big( \\cos 0 + \\sin 0\\big) = \\dfrac{1}{\\sqrt{14}}"Next, we should calculate "df = ds\\cdot \\nabla _{\\mathbf {e} }{f}(\\mathbf {x} ) = 0.1\\cdot \\dfrac{1}{\\sqrt{14}} ."
Comments
Leave a comment