A. The gradient of f(x,y) is given by ∇f(x,y)=fx(x,y)i+fy(x,y)j.
f(x,y)=1x2+3xy−2y2,
fx(x,y)=2x+3y,
fy(x,y)=3x−4y.
So we have:
∇f(x,y)=(2x+3y)i+(3x−4y)j.
Answer. ∇f=(2x+3y)i+(3x−4y)j.
B. ∇f(x0,y0)=fx(x0,y0)i+fy(x0,y0)j. Hence at the point P(3,2) we have:
∇f(3,2)=(2⋅3+3⋅2)i+(3⋅3−4⋅2)j=12i+1j.
Answer. ∇f(3,2)=12i+1j.
C. Duf(P)=∇f(3,2)⋅u, where u is a unit vector. Let's check it.
∣∣u∣∣=(−135)2+(1312)2=16925+169144=1.
So u=−135i+1312j is a unit vector.
Duf(3,2)=(12i+1j)⋅(−135i+1312j)=12⋅(−135)+1⋅(1312)=
=−1360+1312=−1348=−3139.
Answer. Duf(P)=−3139.
Comments