Question #138344
Suppose f(x,y)=1x^2+3xy−2y^2, P=(3,2), and u=(−5/13,12/13).

A. Compute the gradient of f.
∇f=___i+___j
Note: Your answers should be expressions of x and y; e.g. "3x - 4y"

B. Evaluate the gradient at the point P.
(∇f)(3,2)=___i+___j
Note: Your answers should be numbers

C. Compute the directional derivative of f at P in the direction u .
(Duf)(P)=

Note: Your answer should be a number
1
Expert's answer
2020-10-19T17:42:50-0400

A. The gradient of f(x,y)f(x,y) is given by f(x,y)=fx(x,y)i+fy(x,y)j.∇f(x,y)=f_x(x,y) \vec{i}+f_y(x,y) \vec{j}.

f(x,y)=1x2+3xy2y2,f(x,y)=1x^2+3xy−2y^2,

fx(x,y)=2x+3y,f_x(x,y)=2x+3y,

fy(x,y)=3x4y.f_y(x,y)=3x-4y.

So we have:

f(x,y)=(2x+3y)i+(3x4y)j.∇f(x,y)=(2x+3y) \vec{i}+(3x-4y) \vec{j}.


Answer. f=(2x+3y)i+(3x4y)j.∇f=(2x+3y) \vec{i}+(3x-4y) \vec{j}.


B. f(x0,y0)=fx(x0,y0)i+fy(x0,y0)j.∇f(x_0,y_0)=f_x(x_0,y_0) \vec{i}+f_y(x_0,y_0) \vec{j}. Hence at the point P(3,2)P(3,2) we have:

f(3,2)=(23+32)i+(3342)j=12i+1j.∇f(3,2)=(2 \cdot 3+3 \cdot 2) \vec{i}+ (3 \cdot 3-4 \cdot 2) \vec{j}= 12 \vec{i} +1 \vec{j}.


Answer. f(3,2)=12i+1j.∇f(3,2)= 12 \vec{i} +1 \vec{j}.


C. Duf(P)=f(3,2)u,D_u f(P)= ∇f(3,2) \cdot \vec{u}, where u\vec{u} is a unit vector. Let's check it.

u=(513)2+(1213)2=25169+144169=1.||u||=\sqrt{(-\frac{5}{13})^2+(\frac{12}{13})^2}=\sqrt{\frac{25}{169}+\frac{144}{169}}=1.

So u=513i+1213j\vec{u}=-\frac{5}{13} \vec{i}+\frac{12}{13} \vec{j} is a unit vector.

Duf(3,2)=(12i+1j)(513i+1213j)=12(513)+1(1213)=D_u f(3, 2)=(12 \vec{i} +1 \vec{j}) \cdot (-\frac{5}{13} \vec{i}+\frac{12}{13} \vec{j})= 12 \cdot (-\frac{5}{13})+1 \cdot (\frac{12}{13})=

=6013+1213=4813=3913.=-\frac{60}{13}+ \frac{12}{13}= - \frac{48}{13}=-3 \frac{9}{13}.


Answer. Duf(P)=3913.D_u f(P) = -3 \frac{9}{13}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS