A. The gradient of "f(x,y)" is given by "\u2207f(x,y)=f_x(x,y) \\vec{i}+f_y(x,y) \\vec{j}."
"f(x,y)=1x^2+3xy\u22122y^2,"
"f_x(x,y)=2x+3y,"
"f_y(x,y)=3x-4y."
So we have:
"\u2207f(x,y)=(2x+3y) \\vec{i}+(3x-4y) \\vec{j}."
Answer. "\u2207f=(2x+3y) \\vec{i}+(3x-4y) \\vec{j}."
B. "\u2207f(x_0,y_0)=f_x(x_0,y_0) \\vec{i}+f_y(x_0,y_0) \\vec{j}." Hence at the point "P(3,2)" we have:
"\u2207f(3,2)=(2 \\cdot 3+3 \\cdot 2) \\vec{i}+ (3 \\cdot 3-4 \\cdot 2) \\vec{j}= 12 \\vec{i} +1 \\vec{j}."
Answer. "\u2207f(3,2)= 12 \\vec{i} +1 \\vec{j}."
C. "D_u f(P)= \u2207f(3,2) \\cdot \\vec{u}," where "\\vec{u}" is a unit vector. Let's check it.
"||u||=\\sqrt{(-\\frac{5}{13})^2+(\\frac{12}{13})^2}=\\sqrt{\\frac{25}{169}+\\frac{144}{169}}=1."
So "\\vec{u}=-\\frac{5}{13} \\vec{i}+\\frac{12}{13} \\vec{j}" is a unit vector.
"D_u f(3, 2)=(12 \\vec{i} +1 \\vec{j}) \\cdot (-\\frac{5}{13} \\vec{i}+\\frac{12}{13} \\vec{j})=\n12 \\cdot (-\\frac{5}{13})+1 \\cdot (\\frac{12}{13})="
"=-\\frac{60}{13}+ \\frac{12}{13}= - \\frac{48}{13}=-3 \\frac{9}{13}."
Answer. "D_u f(P) = -3 \\frac{9}{13}."
Comments
Leave a comment