A. The gradient of f ( x , y ) f(x,y) f ( x , y ) is given by ∇ f ( x , y ) = f x ( x , y ) i ⃗ + f y ( x , y ) j ⃗ . ∇f(x,y)=f_x(x,y) \vec{i}+f_y(x,y) \vec{j}. ∇ f ( x , y ) = f x ( x , y ) i + f y ( x , y ) j .
f ( x , y ) = 1 x 2 + 3 x y − 2 y 2 , f(x,y)=1x^2+3xy−2y^2, f ( x , y ) = 1 x 2 + 3 x y − 2 y 2 ,
f x ( x , y ) = 2 x + 3 y , f_x(x,y)=2x+3y, f x ( x , y ) = 2 x + 3 y ,
f y ( x , y ) = 3 x − 4 y . f_y(x,y)=3x-4y. f y ( x , y ) = 3 x − 4 y .
So we have:
∇ f ( x , y ) = ( 2 x + 3 y ) i ⃗ + ( 3 x − 4 y ) j ⃗ . ∇f(x,y)=(2x+3y) \vec{i}+(3x-4y) \vec{j}. ∇ f ( x , y ) = ( 2 x + 3 y ) i + ( 3 x − 4 y ) j .
Answer. ∇ f = ( 2 x + 3 y ) i ⃗ + ( 3 x − 4 y ) j ⃗ . ∇f=(2x+3y) \vec{i}+(3x-4y) \vec{j}. ∇ f = ( 2 x + 3 y ) i + ( 3 x − 4 y ) j .
B . ∇ f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) i ⃗ + f y ( x 0 , y 0 ) j ⃗ . ∇f(x_0,y_0)=f_x(x_0,y_0) \vec{i}+f_y(x_0,y_0) \vec{j}. ∇ f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) i + f y ( x 0 , y 0 ) j . Hence at the point P ( 3 , 2 ) P(3,2) P ( 3 , 2 ) we have:
∇ f ( 3 , 2 ) = ( 2 ⋅ 3 + 3 ⋅ 2 ) i ⃗ + ( 3 ⋅ 3 − 4 ⋅ 2 ) j ⃗ = 12 i ⃗ + 1 j ⃗ . ∇f(3,2)=(2 \cdot 3+3 \cdot 2) \vec{i}+ (3 \cdot 3-4 \cdot 2) \vec{j}= 12 \vec{i} +1 \vec{j}. ∇ f ( 3 , 2 ) = ( 2 ⋅ 3 + 3 ⋅ 2 ) i + ( 3 ⋅ 3 − 4 ⋅ 2 ) j = 12 i + 1 j .
Answer. ∇ f ( 3 , 2 ) = 12 i ⃗ + 1 j ⃗ . ∇f(3,2)= 12 \vec{i} +1 \vec{j}. ∇ f ( 3 , 2 ) = 12 i + 1 j .
C . D u f ( P ) = ∇ f ( 3 , 2 ) ⋅ u ⃗ , D_u f(P)= ∇f(3,2) \cdot \vec{u}, D u f ( P ) = ∇ f ( 3 , 2 ) ⋅ u , where u ⃗ \vec{u} u is a unit vector. Let's check it.
∣ ∣ u ∣ ∣ = ( − 5 13 ) 2 + ( 12 13 ) 2 = 25 169 + 144 169 = 1. ||u||=\sqrt{(-\frac{5}{13})^2+(\frac{12}{13})^2}=\sqrt{\frac{25}{169}+\frac{144}{169}}=1. ∣∣ u ∣∣ = ( − 13 5 ) 2 + ( 13 12 ) 2 = 169 25 + 169 144 = 1.
So u ⃗ = − 5 13 i ⃗ + 12 13 j ⃗ \vec{u}=-\frac{5}{13} \vec{i}+\frac{12}{13} \vec{j} u = − 13 5 i + 13 12 j is a unit vector.
D u f ( 3 , 2 ) = ( 12 i ⃗ + 1 j ⃗ ) ⋅ ( − 5 13 i ⃗ + 12 13 j ⃗ ) = 12 ⋅ ( − 5 13 ) + 1 ⋅ ( 12 13 ) = D_u f(3, 2)=(12 \vec{i} +1 \vec{j}) \cdot (-\frac{5}{13} \vec{i}+\frac{12}{13} \vec{j})=
12 \cdot (-\frac{5}{13})+1 \cdot (\frac{12}{13})= D u f ( 3 , 2 ) = ( 12 i + 1 j ) ⋅ ( − 13 5 i + 13 12 j ) = 12 ⋅ ( − 13 5 ) + 1 ⋅ ( 13 12 ) =
= − 60 13 + 12 13 = − 48 13 = − 3 9 13 . =-\frac{60}{13}+ \frac{12}{13}= - \frac{48}{13}=-3 \frac{9}{13}. = − 13 60 + 13 12 = − 13 48 = − 3 13 9 .
Answer. D u f ( P ) = − 3 9 13 . D_u f(P) = -3 \frac{9}{13}. D u f ( P ) = − 3 13 9 .
Comments