Answer to Question #132618 in Calculus for qwerty

Question #132618
\int 3^x dx
1
Expert's answer
2020-09-15T17:08:26-0400

3xdx=(eln(3))xdx=exln(3)dx=exln(3)dx=1ln(3)exln(3)d(xln(3))=1ln(3)exln(3)+C=1ln(3)(eln(3))x+C=3xln(3)+C.\int3^xdx=\int(e^{ln(3)})^xdx=\\ \int e^{x\cdot ln(3)}dx=\int e^{x\cdot ln(3)}dx=\\ \frac{1}{ln(3)}\int e^{x\cdot ln(3)}d(x\cdot ln(3))=\\ \frac{1}{ln(3)}\cdot e^{x\cdot ln(3)}+C=\\ \frac{1}{ln(3)}\cdot(e^{ln(3)})^x+C=\\ \frac{3^x}{ln(3)}+C.

Answer: 3xln(3)+C.\frac{3^x}{ln(3)}+C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment