∫3xdx=∫(eln(3))xdx=∫ex⋅ln(3)dx=∫ex⋅ln(3)dx=1ln(3)∫ex⋅ln(3)d(x⋅ln(3))=1ln(3)⋅ex⋅ln(3)+C=1ln(3)⋅(eln(3))x+C=3xln(3)+C.\int3^xdx=\int(e^{ln(3)})^xdx=\\ \int e^{x\cdot ln(3)}dx=\int e^{x\cdot ln(3)}dx=\\ \frac{1}{ln(3)}\int e^{x\cdot ln(3)}d(x\cdot ln(3))=\\ \frac{1}{ln(3)}\cdot e^{x\cdot ln(3)}+C=\\ \frac{1}{ln(3)}\cdot(e^{ln(3)})^x+C=\\ \frac{3^x}{ln(3)}+C.∫3xdx=∫(eln(3))xdx=∫ex⋅ln(3)dx=∫ex⋅ln(3)dx=ln(3)1∫ex⋅ln(3)d(x⋅ln(3))=ln(3)1⋅ex⋅ln(3)+C=ln(3)1⋅(eln(3))x+C=ln(3)3x+C.
Answer: 3xln(3)+C.\frac{3^x}{ln(3)}+C.ln(3)3x+C.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment