Let us rewrite"\\int t (2 t - 3 \\sqrt{t}) dt" as "\\int (2 t^2 - 3 t^{3\/2}) dt".
Using table integral "\\int x^n dx = \\frac{x^{n+1}}{n+1} + C", obtain:
"\\int (2 t^2 - 3 t^{3\/2}) dt = 2 \\frac{t^3}{3} - 3 \\cdot \\frac{2}{5} t^{5\/2} + C = \\frac{2}{3}t^{3} - \\frac{6}{5} t^{5\/2} + C".
Comments
Leave a comment