Let us rewrite∫t(2t−3t)dt\int t (2 t - 3 \sqrt{t}) dt∫t(2t−3t)dt as ∫(2t2−3t3/2)dt\int (2 t^2 - 3 t^{3/2}) dt∫(2t2−3t3/2)dt.
Using table integral ∫xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C∫xndx=n+1xn+1+C, obtain:
∫(2t2−3t3/2)dt=2t33−3⋅25t5/2+C=23t3−65t5/2+C\int (2 t^2 - 3 t^{3/2}) dt = 2 \frac{t^3}{3} - 3 \cdot \frac{2}{5} t^{5/2} + C = \frac{2}{3}t^{3} - \frac{6}{5} t^{5/2} + C∫(2t2−3t3/2)dt=23t3−3⋅52t5/2+C=32t3−56t5/2+C.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments