Question #132343
Differentiate f(x) = (8x3 + 4x )(2x2 +5) using product rule.
1
Expert's answer
2020-09-10T19:05:09-0400
SolutionSolution

f(x)=h(x)g(x)f(x)=h(x)g(x)+h(x)g(x)f(x)=(8x3+4x)(2x2+5)f(x)=(24x2+4)(2x2+5)+(8x3+4x)(4x)Expanding=48x4+120x2+8x2+20+32x4+16x2    f(x)=80x4+144x2+20>Answerf(x)=h(x) \cdot g(x)\\ f'(x)=h'(x) \cdot g(x)+h(x) \cdot g'(x)\\ f(x)=(8x^3+4x)(2x^2+5)\\ f'(x)=(24x^2+4)(2x^2+5)+(8x^3+4x)(4x)\\ Expanding\\ =48x^4+120x^2+8x^2+20+32x^4+16x^2\\ \implies f'(x)=80x^4+144x^2+20-------->Answer


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS