Solution:
To find dxd[(x2+1)sinx]
Let y=(x2+1)sinx...(i)
Taking log to both sides,
logy=log(x2+1)sinxlogy=sinxlog(x2+1)[∵logmn=nlogm]
Now differentiating both sides w.r.t x using product rule on right side,
dxdlogy=sinxdxd[log(x2+1)]+log(x2+1)dxdsinx
y1dxdy=sinx[x2+11dxd(x2+1)]+log(x2+1)cosxy1dxdy=sinx[x2+11×2x]+log(x2+1)cosxdxdy=y[x2+12xsinx+log(x2+1)cosx]
Now using (i),
dxdy=(x2+1)sinx[x2+12xsinx+log(x2+1)cosx]
Answer:
(x2+1)sinx[x2+12xsinx+log(x2+1)cosx]
Comments