Solution:
To find "\\frac{d}{dx} [(x^2+1)^{\\sin x }]"
Let "y=(x^2+1)^{\\sin x } ...(i)"
Taking log to both sides,
"\\log y=\\log (x^2+1)^{\\sin x }\n\\\\ \\log y=\\sin x \\log (x^2+1) [\\because \\log m^n=n \\log m]"
Now differentiating both sides w.r.t "x" using product rule on right side,
"\\frac d {dx} \\log y=\\sin x \\frac d {dx} [\\log (x^2+1)]+\\log (x^2+1) \\frac d {dx}\\sin x"
"\\frac 1 y\\frac {dy} {dx}=\\sin x[\\frac 1 {x^2+1} \\frac d {dx} (x^2+1)]+\\log (x^2+1) \\cos x\n\\\\ \\frac 1 y\\frac {dy} {dx}=\\sin x[\\frac 1 {x^2+1}\\times 2x]+\\log (x^2+1) \\cos x\n\\\\ \\frac {dy} {dx}=y[\\frac {2x\\sin x} {x^2+1}+\\log (x^2+1) \\cos x]"
Now using (i),
"\\frac {dy}{dx}=(x^2+1)^{\\sin x}[\\frac {2x\\sin x} {x^2+1}+\\log (x^2+1) \\cos x]"
Answer:
"(x^2+1)^{\\sin x}[\\frac {2x\\sin x} {x^2+1}+\\log (x^2+1) \\cos x]"
Comments
Leave a comment