Question #132264
d/dx[(x^2+1)^sinx] .
1
Expert's answer
2020-09-16T19:16:53-0400

Solution:

To find ddx[(x2+1)sinx]\frac{d}{dx} [(x^2+1)^{\sin x }]

Let y=(x2+1)sinx...(i)y=(x^2+1)^{\sin x } ...(i)

Taking log to both sides,

logy=log(x2+1)sinxlogy=sinxlog(x2+1)[logmn=nlogm]\log y=\log (x^2+1)^{\sin x } \\ \log y=\sin x \log (x^2+1) [\because \log m^n=n \log m]

Now differentiating both sides w.r.t xx using product rule on right side,

ddxlogy=sinxddx[log(x2+1)]+log(x2+1)ddxsinx\frac d {dx} \log y=\sin x \frac d {dx} [\log (x^2+1)]+\log (x^2+1) \frac d {dx}\sin x

1ydydx=sinx[1x2+1ddx(x2+1)]+log(x2+1)cosx1ydydx=sinx[1x2+1×2x]+log(x2+1)cosxdydx=y[2xsinxx2+1+log(x2+1)cosx]\frac 1 y\frac {dy} {dx}=\sin x[\frac 1 {x^2+1} \frac d {dx} (x^2+1)]+\log (x^2+1) \cos x \\ \frac 1 y\frac {dy} {dx}=\sin x[\frac 1 {x^2+1}\times 2x]+\log (x^2+1) \cos x \\ \frac {dy} {dx}=y[\frac {2x\sin x} {x^2+1}+\log (x^2+1) \cos x]

Now using (i),

dydx=(x2+1)sinx[2xsinxx2+1+log(x2+1)cosx]\frac {dy}{dx}=(x^2+1)^{\sin x}[\frac {2x\sin x} {x^2+1}+\log (x^2+1) \cos x]

Answer:

(x2+1)sinx[2xsinxx2+1+log(x2+1)cosx](x^2+1)^{\sin x}[\frac {2x\sin x} {x^2+1}+\log (x^2+1) \cos x]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS