Question #132040
use simpson’s method to approximate limit 0 to 8 ∫ (x^2-x+3)dx with 8 sub-intervals.
1
Expert's answer
2021-02-24T05:57:29-0500

if the function f(x) is continuous on [a,b], then

abf(x)dxh3[f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)++4f(xn1)+f(xn)].{\int\limits_a^b {f\left( x \right)dx} }\approx{ {\frac{{h}}{3}}\left[ {f\left( {{x_0}} \right) + 4f\left( {{x_1}} \right) }\right.}+{\left.{ 2f\left( {{x_2}} \right) + 4f\left( {{x_3}} \right) }\right.}+{\left.{ 2f\left( {{x_4}} \right) + \cdots }\right.}+{\left.{ 4f\left( {{x_{n – 1}}} \right) + f\left( {{x_n}} \right)} \right].}

(Simpson's rule)


by the terms of the problem

f(x) = x2 - x +3

a = 0; b = 8

width of each subinterval is

h=808=1h=\frac{8-0}{8} =1

endpoints xi have coordinates:

xi = {0,1,2,3,4,5,6,7,8}

Calculate the function values at the points xi

f(x0) = f(0) = 02 - 0 + 3 = 3

f(x1) = f(1) = 12 - 1 + 3 = 3

f(x2) = f(2) = 22 - 2 + 3 = 5

f(x3) = f(2) = 32 - 3 + 3 = 9

f(x4) = f(2) = 42 - 4 + 3 = 15

f(x5) = f(2) = 52 - 5 + 3 = 23

f(x6) = f(2) = 62 - 6 + 3 = 33

f(x7) = f(2) = 72 - 7 + 3 = 45

f(x8) = f(2) = 82 - 8 + 3 = 59


Substitute all these values into the Simpson’s Rule formula:

08(x2x+3)dxh3{\int\limits_0^8 {\left( x^2 - x + 3 \right)dx} }\approx\frac{{h}}{3} [f(x0)+4f(x1) +2f(x2)+4f(x3) +2f(x4)+4f(x5) +2f(x6)+2f(x7)+f(x8)] =


h3\frac{{h}}{3} [f(x0) +4*(f(x1) + f(x3) + f(x5) + f(x7)) + 2*(f(x2) + f(x4) + f(x6) + f(x7)) + f(x8)] =


13\frac{{1}}{3} [3 + 4*(3 +9 + 23 + 45) + 2*(5 +15 +33)+59] = 488/3 \approx 162.667















Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS