∫06f(x) dx=∫02x2 dx+∫26(3x−2) dx==x33∣02+3x22∣26−2x∣26==83+32(36−4)−2(6−2)=4223∫60f(x) dx=−∫06f(x) dx=>∫60f(x) dx=−4223\int \limits_0^6 f(x)\,dx=\int \limits_0^2 x^2\,dx+\int \limits_2^6 (3x-2)\,dx=\\=\frac{x^3}3 \bigg|_0^2 +3\frac{x^2}2 \bigg|_2^6 - 2x \bigg|_2^6 =\\= \frac{8}3+\frac{3}2 (36-4) - 2 (6-2) = 42\frac{2}3\\ \int\limits_6^0 f(x)\,dx=-\int\limits_0^6f(x)\,dx=>\int\limits_6^0 f(x)\,dx=-42\frac{2}30∫6f(x)dx=0∫2x2dx+2∫6(3x−2)dx==3x3∣∣02+32x2∣∣26−2x∣∣26==38+23(36−4)−2(6−2)=42326∫0f(x)dx=−0∫6f(x)dx=>6∫0f(x)dx=−4232
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment