let f(x)={3x^2,x<=1}{ax+b,x>1} Find the value of a and b so that f is differentiable at x =1
f(x)={3x2if x<=1ax+bif x>1limx↦1ax+b=3 ⟹ a+b=3ddx(3x2)∣x=1=ddx(ax+b)∣x=1 ⟹ a=6 ⟹ b=−3Answer:a=6,b=−3f(x) = \begin{cases} 3x^{2} &\text{if } x<=1 \\ ax+b &\text{if } x>1 \end{cases} \\\lim\limits_{x\mapsto1}ax+b=3\implies a+b=3 \\ \tfrac{d}{dx}(3x^{2})\mid_{x=1}=\tfrac{d}{dx}(ax+b)\mid_{x=1}\implies a=6\implies b=-3 \\Answer:a=6, b=-3f(x)={3x2ax+bif x<=1if x>1x↦1limax+b=3⟹a+b=3dxd(3x2)∣x=1=dxd(ax+b)∣x=1⟹a=6⟹b=−3Answer:a=6,b=−3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment