Question #131420
The base of a certain solid is the region enclosed by the semicircle
1
Expert's answer
2020-09-07T16:44:37-0400
SolutionSolution

Lets say x2+y2=9,for 0x3.x^2+y^2=9, for\ 0 \le x\le 3. We calculate the volume of the circle as;


x2+y2=9for 0x3y2=gx2y=gx2=radius of semicirclesso, area(A)=12πr2    12π(gx2)2so, volume(V)=x1x2A(x)dx=0312π(gx2)2dx=π2[gxx33]03=π2[g(30)133(330)]=π2[279]=π218=gπ (units)3>Answerx^2+y^2=9\\ for\ 0 \le x \le 3\\ y^2=g-x^2\\ y=\sqrt{g-x^2}= radius\ of \ semicircles\\ so,\ area(A)=\frac{1}{2}\pi r^2 \implies \frac{1}{2}\pi (\sqrt{g-x^2})^2\\ so,\ volume(V)=\int_{x_1}^{x_2} A(x) \cdot dx=\int_{0}^{3} \frac{1}{2}\pi (\sqrt{g-x^2})^2 \cdot dx\\ =\frac{\pi}{2}[gx-\frac{x^3}{3}]_{0}^{3}=\frac{\pi}{2}[g(3-0)-\frac{1}{3}{3}(3^3-0)]\\ =\frac{\pi}{2}[27-9]=\frac{\pi}{2} \cdot 18=g \pi\ (units)^3--------->Answer




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS