S o l u t i o n Solution S o l u t i o n Lets say x 2 + y 2 = 9 , f o r 0 ≤ x ≤ 3. x^2+y^2=9, for\ 0 \le x\le 3. x 2 + y 2 = 9 , f or 0 ≤ x ≤ 3. We calculate the volume of the circle as;
x 2 + y 2 = 9 f o r 0 ≤ x ≤ 3 y 2 = g − x 2 y = g − x 2 = r a d i u s o f s e m i c i r c l e s s o , a r e a ( A ) = 1 2 π r 2 ⟹ 1 2 π ( g − x 2 ) 2 s o , v o l u m e ( V ) = ∫ x 1 x 2 A ( x ) ⋅ d x = ∫ 0 3 1 2 π ( g − x 2 ) 2 ⋅ d x = π 2 [ g x − x 3 3 ] 0 3 = π 2 [ g ( 3 − 0 ) − 1 3 3 ( 3 3 − 0 ) ] = π 2 [ 27 − 9 ] = π 2 ⋅ 18 = g π ( u n i t s ) 3 − − − − − − − − − > A n s w e r x^2+y^2=9\\
for\ 0 \le x \le 3\\
y^2=g-x^2\\
y=\sqrt{g-x^2}= radius\ of \ semicircles\\
so,\ area(A)=\frac{1}{2}\pi r^2 \implies \frac{1}{2}\pi (\sqrt{g-x^2})^2\\
so,\ volume(V)=\int_{x_1}^{x_2} A(x) \cdot dx=\int_{0}^{3} \frac{1}{2}\pi (\sqrt{g-x^2})^2 \cdot dx\\
=\frac{\pi}{2}[gx-\frac{x^3}{3}]_{0}^{3}=\frac{\pi}{2}[g(3-0)-\frac{1}{3}{3}(3^3-0)]\\
=\frac{\pi}{2}[27-9]=\frac{\pi}{2} \cdot 18=g \pi\ (units)^3--------->Answer x 2 + y 2 = 9 f or 0 ≤ x ≤ 3 y 2 = g − x 2 y = g − x 2 = r a d i u s o f se mi c i rc l es so , a re a ( A ) = 2 1 π r 2 ⟹ 2 1 π ( g − x 2 ) 2 so , v o l u m e ( V ) = ∫ x 1 x 2 A ( x ) ⋅ d x = ∫ 0 3 2 1 π ( g − x 2 ) 2 ⋅ d x = 2 π [ gx − 3 x 3 ] 0 3 = 2 π [ g ( 3 − 0 ) − 3 1 3 ( 3 3 − 0 )] = 2 π [ 27 − 9 ] = 2 π ⋅ 18 = g π ( u ni t s ) 3 − − − − − − − − − > A n s w er
Comments