Lets say "x^2+y^2=9, for\\ 0 \\le x\\le 3." We calculate the volume of the circle as;
"x^2+y^2=9\\\\\nfor\\ 0 \\le x \\le 3\\\\\ny^2=g-x^2\\\\\ny=\\sqrt{g-x^2}= radius\\ of \\ semicircles\\\\\nso,\\ area(A)=\\frac{1}{2}\\pi r^2 \\implies \\frac{1}{2}\\pi (\\sqrt{g-x^2})^2\\\\\nso,\\ volume(V)=\\int_{x_1}^{x_2} A(x) \\cdot dx=\\int_{0}^{3} \\frac{1}{2}\\pi (\\sqrt{g-x^2})^2 \\cdot dx\\\\\n=\\frac{\\pi}{2}[gx-\\frac{x^3}{3}]_{0}^{3}=\\frac{\\pi}{2}[g(3-0)-\\frac{1}{3}{3}(3^3-0)]\\\\\n=\\frac{\\pi}{2}[27-9]=\\frac{\\pi}{2} \\cdot 18=g \\pi\\ (units)^3--------->Answer"
Comments
Leave a comment