"L=\u222b_1^4 \\sqrt{1+((y^4\/8+1\/(4y^2))')^2}dy =\u222b_1^4 \\sqrt{1+(y^3\/2-1\/(2y^3))^2}dy=\u222b_1^4 \\sqrt{1+(y^6\/4-1\/2+1\/(4y^6)}dy=\\\\\u222b_1^4 \\sqrt{1+y^6\/4-1\/2+1\/(4y^6)}dy=\u222b_1^4 \\sqrt{y^6\/4+1\/2+1\/(4y^6)}dy=\u222b_1^4 \\sqrt{(y^3\/2+1\/(2y^3)^2}dy=\\\\\u222b_1^4 (y^3\/2+1\/(2y^3))dy= (y^4\/8-y^{-2})|_1^4=(4^4\/8-4^{-2})-(1^4\/8-1^{-2})=\\\\=32-1\/16-1\/8+1=33-3\/16=525\/16"
Comments
Leave a comment