Considerthefollowingfunction:f(x)=cos(x)−1+2x2Thentheassertionthatcos(x)≥1−2x2isidenticaltoshowingthat:cos(x)−1+2x2≥0⟺f(x)≥0
Whenx=0,wehavef(0)=0.
Sotoprovethatf(x)≥0weattempttoverifythatthefunctionf(x)isstrictlyincreasing.Todothis,takethederivative:
f′(x)=−sin(x)+x
Ifweshowf′(x)isstrictlypositiveforx>0,thenwecanapplythemeanvaluetheoremtoshowf(x)mustbestrictlyincreasing.Differentiatingagainweget:
f′′(x)=−cos(x)+1
Clearly,ascos(x)≤1⟹1−cos(x)≥0andsowecanusethis(andmeanvaluetheoremagain)toprovef′(x)>0∀x∈[0,2π],hencetheresultfollows.
Comments