Question #131757
prove that cosx>=1-(x^2/2)for all x in the interval[0,2π]
1
Expert's answer
2020-09-07T17:16:58-0400

Consider  the  following  function  :f(x)=cos(x)1+x22Then  the  assertion  that  cos(x)1x22  is  identical  to  showing  that  :                    cos(x)1+x220    f(x)0Consider \;the \;following\;function\;: \\ f(x)= \cos(x) -1 +\dfrac{x^2}{2} \\ Then\;the\;assertion\;that\; \cos(x) \geq 1 -\dfrac{x^2}{2}\; is \;identical \;to\; showing \;that\;: \\ \;\;\;\;\;\;\;\;\;\;\cos(x) -1 +\dfrac{x^2}{2} \geq0 \iff f(x)\geq0


When  x=0,  we  have  f(0)=0.When \; x = 0,\; we\; have\; f ( 0 ) = 0.


So  to  prove  that  f(x)0  we  attempt  to  verify  that  the  function  f(x)is  strictly  increasing.To  do  this,  take  the  derivative:So\;to\;prove\;that\;f(x) \geq 0 \;we\; attempt \;to \;verify\; that\; the\; function\;f(x) \\is \;strictly\;increasing.To \;do \;this, \;take \;the \;derivative:

f(x)=sin(x)+xf'(x)=-\sin(x)+x


If  we  showf(x)  is  strictly  positive  for  x>0,then  we  can  apply  the  mean  value  theorem  to  show  f(x)  must  be  strictly  increasing.  Differentiating  again  we  get:If \;we\; show f ' ( x ) \;is\; strictly\; positive\; for\; x>0, then \;we\; can\; apply\; the \;mean \;value\; \\ theorem \;to\; show\; f ( x )\; must\; be \;strictly\; increasing. \;Differentiating \;again\; we\; get:


f(x)=cos(x)+1f''(x)=-\cos(x)+1


Clearly,  as  cos(x)1    1cos(x)0  and  so  we  can  use  this(and  mean  value  theorem  again)  to  prove  f(x)>0    x[0,2π],  hence  the  resultfollows.Clearly , \;as \;\cos(x)\leq 1 \implies 1-\cos(x) \geq0 \;and\;so\;we\;can\;use\;this \\ (and\;mean\;value\;theorem\;again) \;to\;prove\;f'(x)>0\; \forall \;x\isin[0,2\pi],\;hence\;the\;result \\ follows.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS