∫ 0 ln 3 e x ( 1 + e x ) 1 2 d x \displaystyle\int_{0}^{\ln3}e^x(1+e^x)^{{1 \over 2}}dx ∫ 0 l n 3 e x ( 1 + e x ) 2 1 d x
∫ e x ( 1 + e x ) 1 2 d x \int e^x(1+e^x)^{{1 \over 2}}dx ∫ e x ( 1 + e x ) 2 1 d x u = 1 + e x , d u = e x d x u=1+e^x, du=e^xdx u = 1 + e x , d u = e x d x
∫ e x ( 1 + e x ) 1 2 d x = ∫ u 1 2 d u = 2 3 u 3 2 + C = \int e^x(1+e^x)^{{1 \over 2}}dx=\int u^{{1 \over 2}}du=\dfrac{2}{3}u^{{3 \over 2}}+C= ∫ e x ( 1 + e x ) 2 1 d x = ∫ u 2 1 d u = 3 2 u 2 3 + C =
= 2 3 ( 1 + e x ) 3 2 + C = =\dfrac{2}{3}(1+e^x)^{{3 \over 2}}+C= = 3 2 ( 1 + e x ) 2 3 + C =
∫ 0 ln 3 e x ( 1 + e x ) 1 2 d x = [ 2 3 ( 1 + e x ) 3 2 ] ln 3 0 = \displaystyle\int_{0}^{\ln3}e^x(1+e^x)^{{1 \over 2}}dx=\big[\dfrac{2}{3}(1+e^x)^{{3 \over 2}}\big]\begin{matrix}
\ln3 \\
0
\end{matrix}= ∫ 0 l n 3 e x ( 1 + e x ) 2 1 d x = [ 3 2 ( 1 + e x ) 2 3 ] ln 3 0 =
= 2 3 ( 1 + 3 ) 3 2 − 2 3 ( 1 + 1 ) 3 2 = =\dfrac{2}{3}(1+3)^{{3 \over 2}}-\dfrac{2}{3}(1+1)^{{3 \over 2}}= = 3 2 ( 1 + 3 ) 2 3 − 3 2 ( 1 + 1 ) 2 3 =
= 16 3 − 4 2 3 =\dfrac{16}{3}-\dfrac{4\sqrt{2}}{3} = 3 16 − 3 4 2
Comments