Question #132341
Differentiate f(x) = (2x3 + 3x2 )(x2 + 5x3 +5) using product rule.
1
Expert's answer
2020-09-10T16:34:52-0400

The product rule states that;a function, ff such that ;

f(x)=g(x)h(x)f(x) =g(x) h(x)


ddxf(x)=g(x)h(x)+g(x)h(x)\frac{d} {dx} f(x) =g'(x) h(x) +g(x) h'(x)


f(x)=(2x3+3x2)(x2+5x3+5)f(x) =(2x^{3} +3x^{2}) (x^{2} +5x^{3} +5) that can split into the product of two functions gg

 and hh , where

g(x)=(2x3+3x2)g(x) =(2x^{3} +3x^{2})

h(x)=(x2+5x3+5)h(x) =(x^{2} +5x^{3} +5)


Applying the power rule ;

g(x)=(6x2+6x)g'(x) =(6x^{2} +6x)

h(x)=(2x+15x2)h'(x) =(2x+15x^{2})


Plugging g,g,hg, g', h and hh' into the power rule function ;

ddxf(x)=(6x2+6x)(x2+5x3+5)+\frac{d} {dx} f(x)=(6x^{2} +6x)(x^{2} +5x^{3} +5)+(2x+15x2)(2x3+3x2)(2x+15x^{2}) (2x^{3} +3x^{2})


ddxf(x)=6x4+30x5+30x2+6x3+\frac{d} {dx} f(x)=6x^{4}+30x^{5}+30x^{2} +6x^{3}+30x4+30x+4x4+6x3+30x5+45x430x^{4}+30x+4x^{4}+6x^{3} +30x^{5} +45x^{4}


ddxf(x)=60x5+85x4+12x3+30x2+30x\frac{d} {dx} f(x)=60x^{5}+85x^{4} +12x^{3} +30x^{2} +30x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS