The product rule states that;a function, "f" such that ;
"f(x) =g(x) h(x)"
"\\frac{d} {dx} f(x) =g'(x) h(x) +g(x) h'(x)"
"f(x) =(2x^{3} +3x^{2}) (x^{2} +5x^{3} +5)" that can split into the product of two functions "g"
and "h" , where
"g(x) =(2x^{3} +3x^{2})"
"h(x) =(x^{2} +5x^{3} +5)"
Applying the power rule ;
"g'(x) =(6x^{2} +6x)"
"h'(x) =(2x+15x^{2})"
Plugging "g, g', h" and "h'" into the power rule function ;
"\\frac{d} {dx} f(x)=(6x^{2} +6x)(x^{2} +5x^{3} +5)+""(2x+15x^{2}) (2x^{3} +3x^{2})"
"\\frac{d} {dx} f(x)=6x^{4}+30x^{5}+30x^{2} +6x^{3}+""30x^{4}+30x+4x^{4}+6x^{3} +30x^{5} +45x^{4}"
"\\frac{d} {dx} f(x)=60x^{5}+85x^{4} +12x^{3} +30x^{2} +30x"
Comments
Leave a comment