The product rule states that;a function, f such that ;
f(x)=g(x)h(x)
dxdf(x)=g′(x)h(x)+g(x)h′(x)
f(x)=(2x3+3x2)(x2+5x3+5) that can split into the product of two functions g
and h , where
g(x)=(2x3+3x2)
h(x)=(x2+5x3+5)
Applying the power rule ;
g′(x)=(6x2+6x)
h′(x)=(2x+15x2)
Plugging g,g′,h and h′ into the power rule function ;
dxdf(x)=(6x2+6x)(x2+5x3+5)+(2x+15x2)(2x3+3x2)
dxdf(x)=6x4+30x5+30x2+6x3+30x4+30x+4x4+6x3+30x5+45x4
dxdf(x)=60x5+85x4+12x3+30x2+30x
Comments