Let us define y=tan−1x,x=tany.y=\tan^{-1} x, x=\tan y.y=tan−1x,x=tany.
So we may rewrite the derivative as
dln(1+x2)dtan−1x=dln(1+tan2y)dy=11+tan2y⋅2tany⋅1cos2y=11+x2⋅2x⋅(1+tan2y)=11+x2⋅2x⋅(1+x2)=2x\dfrac{d\ln(1+x^2) } {d \tan^{-1}x } = \dfrac{d\ln(1+\tan^2y) } {d y} =\dfrac{1} {1+\tan^2y} \cdot 2\tan y \cdot \dfrac{1} {\cos^2y} = \dfrac{1} {1+x^2} \cdot2x\cdot(1+\tan^2y) = \dfrac{1} {1+x^2} \cdot2x\cdot(1+x^2)=2xdtan−1xdln(1+x2)=dydln(1+tan2y)=1+tan2y1⋅2tany⋅cos2y1=1+x21⋅2x⋅(1+tan2y)=1+x21⋅2x⋅(1+x2)=2x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments