Let us define "y=\\tan^{-1} x, x=\\tan y."
So we may rewrite the derivative as
"\\dfrac{d\\ln(1+x^2) } {d \\tan^{-1}x } = \\dfrac{d\\ln(1+\\tan^2y) } {d y} =\\dfrac{1} {1+\\tan^2y} \\cdot 2\\tan y \\cdot \\dfrac{1} {\\cos^2y} = \\dfrac{1} {1+x^2} \\cdot2x\\cdot(1+\\tan^2y) = \\dfrac{1} {1+x^2} \\cdot2x\\cdot(1+x^2)=2x"
Comments
Leave a comment