Question #132265
Find the derivative of ln(1+ x^2) w.r.t. tan inverse x
1
Expert's answer
2020-09-09T15:29:03-0400

Let us define y=tan1x,x=tany.y=\tan^{-1} x, x=\tan y.

So we may rewrite the derivative as

dln(1+x2)dtan1x=dln(1+tan2y)dy=11+tan2y2tany1cos2y=11+x22x(1+tan2y)=11+x22x(1+x2)=2x\dfrac{d\ln(1+x^2) } {d \tan^{-1}x } = \dfrac{d\ln(1+\tan^2y) } {d y} =\dfrac{1} {1+\tan^2y} \cdot 2\tan y \cdot \dfrac{1} {\cos^2y} = \dfrac{1} {1+x^2} \cdot2x\cdot(1+\tan^2y) = \dfrac{1} {1+x^2} \cdot2x\cdot(1+x^2)=2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS