Equation of the hypotenuse of the right angle triangle is "y = -2x + 2"
Mass of the plate is given by
"M = \\int_0^1 \\int_0^{(2-2x)} (1+x+y)dydx"
"\\int_0^1 (y+xy+\\frac{y^2}{2})|_0^{2-2x} dx = \\int_0^1 4-4x dx = 2"
Center of mass,
X-coordinate,
"M_x = \\frac{1}{M} \\int_0^1 \\int_0^{2-2x} x(1+y+x)dydx = \\frac{1}{M} \\int_0^1 [xy+x^2y+\\frac{xy^2}{2} ]_0^{2-2x} dx"
"= \\frac{1}{M} \\int_0^1 (4x-4x^2) dx = \\frac{1}{3}"
Y-coordinate,
"M_y=\\frac{1}{M} \\int_0^1 \\int_0^{2-2x} y(1+y+x)dydx"
"= \\frac{1}{M} \\int_0^1[ \\frac{(2-2x)^2}{2}+\\frac{x(2-2x)^2}{2} + \\frac{(2-2x)^3}{3} ]dx"
"= \\frac{3}{4}"
Comments
Leave a comment