Question #129355
Find the mass and center of mass of a triangular lamina with vertices
(0, 0), (1, 0)
and
(0, 2)
if the density function is p(x,y)=1+x+y
1
Expert's answer
2020-08-13T18:36:22-0400

Equation of the hypotenuse of the right angle triangle is y=2x+2y = -2x + 2

Mass of the plate is given by

M=010(22x)(1+x+y)dydxM = \int_0^1 \int_0^{(2-2x)} (1+x+y)dydx


01(y+xy+y22)022xdx=0144xdx=2\int_0^1 (y+xy+\frac{y^2}{2})|_0^{2-2x} dx = \int_0^1 4-4x dx = 2



Center of mass,

X-coordinate,

Mx=1M01022xx(1+y+x)dydx=1M01[xy+x2y+xy22]022xdxM_x = \frac{1}{M} \int_0^1 \int_0^{2-2x} x(1+y+x)dydx = \frac{1}{M} \int_0^1 [xy+x^2y+\frac{xy^2}{2} ]_0^{2-2x} dx


=1M01(4x4x2)dx=13= \frac{1}{M} \int_0^1 (4x-4x^2) dx = \frac{1}{3}


Y-coordinate,

My=1M01022xy(1+y+x)dydxM_y=\frac{1}{M} \int_0^1 \int_0^{2-2x} y(1+y+x)dydx


=1M01[(22x)22+x(22x)22+(22x)33]dx= \frac{1}{M} \int_0^1[ \frac{(2-2x)^2}{2}+\frac{x(2-2x)^2}{2} + \frac{(2-2x)^3}{3} ]dx


=34= \frac{3}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS