Answer:
Volume=1564π units3
Solution
We are given functions: y=2x ,and y=x2
Solving for limits of x:
x2=2x=>x2−2x=0=>x(x−2)=0=>either x=0 or x−2=0
∴ x=0 or x=2
When a region is rotated about the x−axis, Volume is given by:
V=π∫x1x2y2dx
Now,
When y=2x, y2=(2x)2
=>y2=4x2 , and
When y=x2, y2=(x2)2
=>y2=x4
∴ Volume=π∫02(4x2−x4)dx
=π⌈34x3−5x5⌉02
=π⌈(34(23)−5(25))−(34(03)−5(05))⌉
=π⌈(34(8)−532)−(34(0)−5(0))⌉
=π⌈(332−532)−(0−0)⌉
=π⌈332−532⌉
=π⌈15160−96⌉
=π(1564)
=1564π units3
Comments