Answer:
"Volume = \\dfrac {64\u03c0} {15} \\space units^3"
Solution
We are given functions: "y = 2x \\space, and \\space y = x^2"
Solving for limits of x:
"x^2 = 2x \\\\ => x^2 - 2x = 0\\\\ => x(x-2) = 0 \\\\ => either \\space x = 0 \\space or \\space x -2 = 0"
"\\therefore \\space x = 0 \\space or \\space x = 2"
When a region is rotated about the "x-axis", Volume is given by:
"V = \u03c0 \\int_{x_1}^{x_2} y^2 dx"
Now,
"When \\space y = 2x, \\space y^2 = (2x)^2"
"=> y^2 = 4x^2" , and
"When \\space y = x^2, \\space y^2 = (x^2)^2"
"=> y^2 = x^4"
"\\therefore \\space Volume = \u03c0 \\int_{0}^{2} (4x^2-x^4)dx"
"= \u03c0 \\Big \\lceil \\dfrac {4x^3}{3} - \\dfrac {x^5}{5} \\Big \\rceil_{0}^{2}"
"= \u03c0 \\Big \\lceil \\Big(\\dfrac {4(2^3)}{3} - \\dfrac {(2^5)} {5} \\Big) - \\Big(\\dfrac {4(0^3)}{3} - \\dfrac {(0^5)} {5} \\Big) \\Big \\rceil"
"= \u03c0 \\Big \\lceil \\Big(\\dfrac {4(8)}{3} - \\dfrac {32} {5} \\Big) - \\Big(\\dfrac {4(0)}{3} - \\dfrac {(0)} {5} \\Big) \\Big \\rceil"
"= \u03c0 \\Big \\lceil \\Big(\\dfrac {32}{3} - \\dfrac {32} {5} \\Big) - \\Big(0 - 0 \\Big) \\Big \\rceil"
"= \u03c0 \\Big \\lceil \\dfrac {32}{3} - \\dfrac {32} {5} \\Big \\rceil"
"= \u03c0 \\Big \\lceil \\dfrac {160-96}{15} \\Big \\rceil"
"= \u03c0 \\Big( \\dfrac {64}{15} \\Big)"
"= \\dfrac {64\u03c0}{15} \\space units^3"
Comments
Leave a comment