Answer to Question #129172 in Calculus for Jade

Question #129172
Multiple choice: Find the volume of the solid that results when the region enclosed by the graphs of y=x^2 and y=2x is rotated about the x-axis

A:4/15 B:1/6 C:2pi/3 D:64pi/15
1
Expert's answer
2020-08-11T17:37:06-0400

Answer:

"Volume = \\dfrac {64\u03c0} {15} \\space units^3"



Solution

We are given functions: "y = 2x \\space, and \\space y = x^2"


Solving for limits of x:

"x^2 = 2x \\\\ => x^2 - 2x = 0\\\\ => x(x-2) = 0 \\\\ => either \\space x = 0 \\space or \\space x -2 = 0"

"\\therefore \\space x = 0 \\space or \\space x = 2"


When a region is rotated about the "x-axis", Volume is given by:

"V = \u03c0 \\int_{x_1}^{x_2} y^2 dx"


Now,

"When \\space y = 2x, \\space y^2 = (2x)^2"

"=> y^2 = 4x^2" , and


"When \\space y = x^2, \\space y^2 = (x^2)^2"

"=> y^2 = x^4"


"\\therefore \\space Volume = \u03c0 \\int_{0}^{2} (4x^2-x^4)dx"


"= \u03c0 \\Big \\lceil \\dfrac {4x^3}{3} - \\dfrac {x^5}{5} \\Big \\rceil_{0}^{2}"

"= \u03c0 \\Big \\lceil \\Big(\\dfrac {4(2^3)}{3} - \\dfrac {(2^5)} {5} \\Big) - \\Big(\\dfrac {4(0^3)}{3} - \\dfrac {(0^5)} {5} \\Big) \\Big \\rceil"


"= \u03c0 \\Big \\lceil \\Big(\\dfrac {4(8)}{3} - \\dfrac {32} {5} \\Big) - \\Big(\\dfrac {4(0)}{3} - \\dfrac {(0)} {5} \\Big) \\Big \\rceil"

"= \u03c0 \\Big \\lceil \\Big(\\dfrac {32}{3} - \\dfrac {32} {5} \\Big) - \\Big(0 - 0 \\Big) \\Big \\rceil"


"= \u03c0 \\Big \\lceil \\dfrac {32}{3} - \\dfrac {32} {5} \\Big \\rceil"


"= \u03c0 \\Big \\lceil \\dfrac {160-96}{15} \\Big \\rceil"


"= \u03c0 \\Big( \\dfrac {64}{15} \\Big)"


"= \\dfrac {64\u03c0}{15} \\space units^3"





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS