Question #129172
Multiple choice: Find the volume of the solid that results when the region enclosed by the graphs of y=x^2 and y=2x is rotated about the x-axis

A:4/15 B:1/6 C:2pi/3 D:64pi/15
1
Expert's answer
2020-08-11T17:37:06-0400

Answer:

Volume=64π15 units3Volume = \dfrac {64π} {15} \space units^3



Solution

We are given functions: y=2x ,and y=x2y = 2x \space, and \space y = x^2


Solving for limits of x:

x2=2x=>x22x=0=>x(x2)=0=>either x=0 or x2=0x^2 = 2x \\ => x^2 - 2x = 0\\ => x(x-2) = 0 \\ => either \space x = 0 \space or \space x -2 = 0

 x=0 or x=2\therefore \space x = 0 \space or \space x = 2


When a region is rotated about the xaxisx-axis, Volume is given by:

V=πx1x2y2dxV = π \int_{x_1}^{x_2} y^2 dx


Now,

When y=2x, y2=(2x)2When \space y = 2x, \space y^2 = (2x)^2

=>y2=4x2=> y^2 = 4x^2 , and


When y=x2, y2=(x2)2When \space y = x^2, \space y^2 = (x^2)^2

=>y2=x4=> y^2 = x^4


 Volume=π02(4x2x4)dx\therefore \space Volume = π \int_{0}^{2} (4x^2-x^4)dx


=π4x33x5502= π \Big \lceil \dfrac {4x^3}{3} - \dfrac {x^5}{5} \Big \rceil_{0}^{2}

=π(4(23)3(25)5)(4(03)3(05)5)= π \Big \lceil \Big(\dfrac {4(2^3)}{3} - \dfrac {(2^5)} {5} \Big) - \Big(\dfrac {4(0^3)}{3} - \dfrac {(0^5)} {5} \Big) \Big \rceil


=π(4(8)3325)(4(0)3(0)5)= π \Big \lceil \Big(\dfrac {4(8)}{3} - \dfrac {32} {5} \Big) - \Big(\dfrac {4(0)}{3} - \dfrac {(0)} {5} \Big) \Big \rceil

=π(323325)(00)= π \Big \lceil \Big(\dfrac {32}{3} - \dfrac {32} {5} \Big) - \Big(0 - 0 \Big) \Big \rceil


=π323325= π \Big \lceil \dfrac {32}{3} - \dfrac {32} {5} \Big \rceil


=π1609615= π \Big \lceil \dfrac {160-96}{15} \Big \rceil


=π(6415)= π \Big( \dfrac {64}{15} \Big)


=64π15 units3= \dfrac {64π}{15} \space units^3





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS