Profit=Revenue−Cost
q=100000−200p=>p(q)=500−0.005q
R(q)=p(q)⋅q=500q−0.005q2
P(q)=R(q)−C(q)==500q−0.005q2−(150000+100q+0.003q2)==400q−0.008q2−150000 a.
P′(q)=400−0.016q
Find the critical number(s)
P′(q)=0=>400−0.016q=0=>q=25000
P′′(q)=−0.016<0
The function P(q) has a local maximum at q=25000.
Since the function P(q) has the only extremum, then the function P(q) has the absolute maximum at q=25000.
A company has to produce q=25000 units in order to maximize annual profit.
b.
p(25000)=500−0.005(25000)=375 The price is Rs375.
c.
P(25000)=400(25000)−0.008(25000)2−150000=
=4850000The expected annual profit is Rs4,850,000.
Comments