Given
"T'(t)=(280+1.5t^2e^{-0.12t})'="
"=1.5(2t)e^{-0.12t}+1.5t^2(-0.12e^{-0.12t})="
"=3te^{-0.12t}-0.18t^2e^{-0.12t}"
"T''(t)=(3te^{-0.12t}-0.18t^2e^{-0.12t})'="
"=3e^{-0.12t}+3t(-0.12e^{-0.12t})-"
"-0.18(2t)e^{-0.12t}-0.18t^2(-0.12e^{-0.12t})="
"=3e^{-0.12t}-0.72te^{-0.12t}+0.0216t^2e^{-0.12t}"
"+0.0216(20)^2e^{-0.12(20)}\\approx-0.25K\/min^2"
The rate of change of the rate of change of temperature at the instant t = 20 minutes is "-0.25\\ K\/min^2."
Comments
Leave a comment