Question #127347
Use sigma notation to represent the area under the curve y=1/x​ on the interval [1, 4] using left hand approximation and 6 subintervals.
1
Expert's answer
2020-07-27T17:15:09-0400

To approximate the area under the curve y=1/x​ on the interval [1, 4] using left hand approximation and 6 subintervals, we follow next steps:

  1. We divide the interval [1; 4] into 6 subintervals of equal length, ∆x = (4-1)/6 = 0.5. This divides the interval [1; 4] into 6 subintervals: [1, 1.5], [1.5, 2], [2, 2.5], [2.5, 3], [3, 3.5], [3.5, 4] each with length 0.5.

Above each subinterval draw a rectangle with height equal to the height of the function at the left endpoint of the subinterval:

  1. We use the sum of the areas of the approximating rectangles to approximate the area under the curve. We get:

AL6=n=16f(xi1)x.A \approx L_6=\sum_{n=1}^{6} f(x_{i-1})∆x.

Af(x0)x+f(x1)x+f(x2)x+f(x3)x+f(x4)x+f(x5)x=A \approx f(x_0)∆x+f(x_1)∆x+f(x_2)∆x+f(x_3)∆x+f(x_4)∆x+f(x_5)∆x=

=x(f(x0)+f(x1)+f(x2)+f(x3)+f(x4)+f(x5))==∆x(f(x_0)+f(x_1)+f(x_2)+f(x_3)+f(x_4)+f(x_5))=

=12(1+23+12+25+13+27)=12(31370)=12(22370)=1831401.59=\frac{1}{2}(1+\frac{2}{3}+\frac{1}{2}+\frac{2}{5}+\frac{1}{3}+\frac{2}{7})=\frac{1}{2}(3\frac{13}{70})=\frac{1}{2}(\frac{223}{70})=1\frac{83}{140} \approx 1.59


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS