To approximate the area under the curve y=1/x on the interval [1, 4] using left hand approximation and 6 subintervals, we follow next steps:
Above each subinterval draw a rectangle with height equal to the height of the function at the left endpoint of the subinterval:
"A \\approx L_6=\\sum_{n=1}^{6} f(x_{i-1})\u2206x."
"A \\approx f(x_0)\u2206x+f(x_1)\u2206x+f(x_2)\u2206x+f(x_3)\u2206x+f(x_4)\u2206x+f(x_5)\u2206x="
"=\u2206x(f(x_0)+f(x_1)+f(x_2)+f(x_3)+f(x_4)+f(x_5))="
"=\\frac{1}{2}(1+\\frac{2}{3}+\\frac{1}{2}+\\frac{2}{5}+\\frac{1}{3}+\\frac{2}{7})=\\frac{1}{2}(3\\frac{13}{70})=\\frac{1}{2}(\\frac{223}{70})=1\\frac{83}{140} \\approx 1.59"
Comments
Leave a comment