To approximate the area under the curve y=1/x on the interval [1, 4] using left hand approximation and 6 subintervals, we follow next steps:
- We divide the interval [1; 4] into 6 subintervals of equal length, ∆x = (4-1)/6 = 0.5. This divides the interval [1; 4] into 6 subintervals: [1, 1.5], [1.5, 2], [2, 2.5], [2.5, 3], [3, 3.5], [3.5, 4] each with length 0.5.
Above each subinterval draw a rectangle with height equal to the height of the function at the left endpoint of the subinterval:
- We use the sum of the areas of the approximating rectangles to approximate the area under the curve. We get:
A≈L6=∑n=16f(xi−1)∆x.
A≈f(x0)∆x+f(x1)∆x+f(x2)∆x+f(x3)∆x+f(x4)∆x+f(x5)∆x=
=∆x(f(x0)+f(x1)+f(x2)+f(x3)+f(x4)+f(x5))=
=21(1+32+21+52+31+72)=21(37013)=21(70223)=114083≈1.59
Comments