We have a equation of the form "y=f(x)". To start, we'll find the derivative of the equation.
"\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{\\mathrm{d}}{\\mathrm{d}x}(3x+2)^2"Using the chain rule, we can solve it to
"\\frac{\\mathrm{d}}{\\mathrm{d}x}(3x+2)^2 = 2(3x+2)\\cdot 3 = 18x+12"The length of a curve is given by
"L=\\int_a^b\\sqrt{1+\\left(\\frac{\\mathrm{d}y}{\\mathrm{d}x}\\right)^2}\\mathrm{d}x"Substituting, we get
"\\begin{aligned}\nL&=\\int_1^4\\sqrt{1+\\left(18x+12\\right)^2}\\mathrm{d}x\\\\\n&=\\int_1^4\\sqrt{1+36\\left(3x+2\\right)^2}\\mathrm{d}x\\\\\n\\end{aligned}"Substituting, "u=3x+2 \\implies \\frac{\\mathrm{d}u}{\\mathrm{d}x}=3 \\implies \\mathrm{d}x=\\frac13\\mathrm{d}u"
"\\begin{aligned}\nL &= \\frac13\\int\\sqrt{1+36u^2}\\mathrm{d}u\\\\\n\\end{aligned}"Substituting, "u=\\frac{\\tan v}6 \\implies v=\\arctan(6u) \\implies \\mathrm{d}u=\\frac{\\sec^2v}{6}\\mathrm{d}v"
"\\begin{aligned}\nL &= \\frac13\\int\\frac{\\sec^2v\\sqrt{1+\\tan^2v}}{6}\\mathrm{d}v\\\\\n&= \\frac1{18}\\int\\sec^3v\\ \\mathrm{d}v\\\\\n\\end{aligned}"This is a trivial integration solvable by a reduction formula and the standard formula for "\\sec x".
"\\int\\sec^nx\\ \\mathrm{d}x = \\frac{\\sec^{n-2}x \\tan x}{n-1} + \\frac{n-2}{n-1}\\int\\sec^{n-2}x\\ \\mathrm{d}x"
"\\begin{aligned}\n\\therefore \\int \\sec^3v\\ \\mathrm{d}v &= \\frac{\\sec v \\tan v}{2} + \\frac{1}{2}\\int\\sec v\\ \\mathrm{d}v\\\\\n&= \\frac{\\sec v \\tan v}{2} + \\frac{1}{2}\\ln(\\sec v + \\tan v)\\\\\n\\end{aligned}" The final value is (ignoring the constant of integration)
"\\begin{aligned}\nL &= \\frac1{18}\\frac{\\sec v \\tan v + \\ln(\\tan v + \\sec v)}{2}\\\\\n&= \\frac{\\sqrt{1+36u^2}\\cdot 6u + \\ln(6u + \\sqrt{1+36u^2})}{36}\\\\\n&= \\frac{\\sqrt{1+36(3x+2)^2}\\cdot 6(3x+2) + \\ln(6(3x+2) + \\sqrt{1+36(3x+2)^2})}{36}\\\\\n\\end{aligned}"
Simplifying, and applying the limits, we get
"\\begin{aligned}\nL&=\\left[ \\frac{\\ln(|\\sqrt{324x^2+432x+145}+18x+12|)+(18x+12)\\sqrt{324x^2+432x+145}}{36} \\right]_1^4\\\\\n&= \\frac{\\ln\\left(\\frac{84+\\sqrt{7057}}{30+\\sqrt{901}}\\right)+ 6(14\\sqrt{7057}-5\\sqrt{901})}{36}\\\\\n&\\approx 171.0285971744902\n\\end{aligned}"
Comments
Leave a comment