We have a equation of the form y = f ( x ) y=f(x) y = f ( x ) . To start, we'll find the derivative of the equation.
d y d x = d d x ( 3 x + 2 ) 2 \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(3x+2)^2 d x d y = d x d ( 3 x + 2 ) 2 Using the chain rule, we can solve it to
d d x ( 3 x + 2 ) 2 = 2 ( 3 x + 2 ) ⋅ 3 = 18 x + 12 \frac{\mathrm{d}}{\mathrm{d}x}(3x+2)^2 = 2(3x+2)\cdot 3 = 18x+12 d x d ( 3 x + 2 ) 2 = 2 ( 3 x + 2 ) ⋅ 3 = 18 x + 12 The length of a curve is given by
L = ∫ a b 1 + ( d y d x ) 2 d x L=\int_a^b\sqrt{1+\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}\mathrm{d}x L = ∫ a b 1 + ( d x d y ) 2 d x Substituting, we get
L = ∫ 1 4 1 + ( 18 x + 12 ) 2 d x = ∫ 1 4 1 + 36 ( 3 x + 2 ) 2 d x \begin{aligned}
L&=\int_1^4\sqrt{1+\left(18x+12\right)^2}\mathrm{d}x\\
&=\int_1^4\sqrt{1+36\left(3x+2\right)^2}\mathrm{d}x\\
\end{aligned} L = ∫ 1 4 1 + ( 18 x + 12 ) 2 d x = ∫ 1 4 1 + 36 ( 3 x + 2 ) 2 d x Substituting, u = 3 x + 2 ⟹ d u d x = 3 ⟹ d x = 1 3 d u u=3x+2 \implies \frac{\mathrm{d}u}{\mathrm{d}x}=3 \implies \mathrm{d}x=\frac13\mathrm{d}u u = 3 x + 2 ⟹ d x d u = 3 ⟹ d x = 3 1 d u
L = 1 3 ∫ 1 + 36 u 2 d u \begin{aligned}
L &= \frac13\int\sqrt{1+36u^2}\mathrm{d}u\\
\end{aligned} L = 3 1 ∫ 1 + 36 u 2 d u Substituting, u = tan v 6 ⟹ v = arctan ( 6 u ) ⟹ d u = sec 2 v 6 d v u=\frac{\tan v}6 \implies v=\arctan(6u) \implies \mathrm{d}u=\frac{\sec^2v}{6}\mathrm{d}v u = 6 t a n v ⟹ v = arctan ( 6 u ) ⟹ d u = 6 s e c 2 v d v
L = 1 3 ∫ sec 2 v 1 + tan 2 v 6 d v = 1 18 ∫ sec 3 v d v \begin{aligned}
L &= \frac13\int\frac{\sec^2v\sqrt{1+\tan^2v}}{6}\mathrm{d}v\\
&= \frac1{18}\int\sec^3v\ \mathrm{d}v\\
\end{aligned} L = 3 1 ∫ 6 sec 2 v 1 + tan 2 v d v = 18 1 ∫ sec 3 v d v This is a trivial integration solvable by a reduction formula and the standard formula for sec x \sec x sec x .
∫ sec n x d x = sec n − 2 x tan x n − 1 + n − 2 n − 1 ∫ sec n − 2 x d x \int\sec^nx\ \mathrm{d}x = \frac{\sec^{n-2}x \tan x}{n-1} + \frac{n-2}{n-1}\int\sec^{n-2}x\ \mathrm{d}x ∫ sec n x d x = n − 1 sec n − 2 x tan x + n − 1 n − 2 ∫ sec n − 2 x d x
∴ ∫ sec 3 v d v = sec v tan v 2 + 1 2 ∫ sec v d v = sec v tan v 2 + 1 2 ln ( sec v + tan v ) \begin{aligned}
\therefore \int \sec^3v\ \mathrm{d}v &= \frac{\sec v \tan v}{2} + \frac{1}{2}\int\sec v\ \mathrm{d}v\\
&= \frac{\sec v \tan v}{2} + \frac{1}{2}\ln(\sec v + \tan v)\\
\end{aligned} ∴ ∫ sec 3 v d v = 2 sec v tan v + 2 1 ∫ sec v d v = 2 sec v tan v + 2 1 ln ( sec v + tan v ) The final value is (ignoring the constant of integration)
L = 1 18 sec v tan v + ln ( tan v + sec v ) 2 = 1 + 36 u 2 ⋅ 6 u + ln ( 6 u + 1 + 36 u 2 ) 36 = 1 + 36 ( 3 x + 2 ) 2 ⋅ 6 ( 3 x + 2 ) + ln ( 6 ( 3 x + 2 ) + 1 + 36 ( 3 x + 2 ) 2 ) 36 \begin{aligned}
L &= \frac1{18}\frac{\sec v \tan v + \ln(\tan v + \sec v)}{2}\\
&= \frac{\sqrt{1+36u^2}\cdot 6u + \ln(6u + \sqrt{1+36u^2})}{36}\\
&= \frac{\sqrt{1+36(3x+2)^2}\cdot 6(3x+2) + \ln(6(3x+2) + \sqrt{1+36(3x+2)^2})}{36}\\
\end{aligned} L = 18 1 2 sec v tan v + ln ( tan v + sec v ) = 36 1 + 36 u 2 ⋅ 6 u + ln ( 6 u + 1 + 36 u 2 ) = 36 1 + 36 ( 3 x + 2 ) 2 ⋅ 6 ( 3 x + 2 ) + ln ( 6 ( 3 x + 2 ) + 1 + 36 ( 3 x + 2 ) 2 )
Simplifying, and applying the limits, we get
L = [ ln ( ∣ 324 x 2 + 432 x + 145 + 18 x + 12 ∣ ) + ( 18 x + 12 ) 324 x 2 + 432 x + 145 36 ] 1 4 = ln ( 84 + 7057 30 + 901 ) + 6 ( 14 7057 − 5 901 ) 36 ≈ 171.0285971744902 \begin{aligned}
L&=\left[ \frac{\ln(|\sqrt{324x^2+432x+145}+18x+12|)+(18x+12)\sqrt{324x^2+432x+145}}{36} \right]_1^4\\
&= \frac{\ln\left(\frac{84+\sqrt{7057}}{30+\sqrt{901}}\right)+ 6(14\sqrt{7057}-5\sqrt{901})}{36}\\
&\approx 171.0285971744902
\end{aligned} L = [ 36 ln ( ∣ 324 x 2 + 432 x + 145 + 18 x + 12∣ ) + ( 18 x + 12 ) 324 x 2 + 432 x + 145 ] 1 4 = 36 ln ( 30 + 901 84 + 7057 ) + 6 ( 14 7057 − 5 901 ) ≈ 171.0285971744902
Comments