Answer to Question #127078 in Calculus for Randal Rodriguez

Question #127078
The sides of a square are increasing at a rate of 10 cm/sec. How fast is the area enclosed by the square increasing when the area is 150 cm2.
1
Expert's answer
2020-07-26T16:53:42-0400

Let x be the side length of the square. The area of the square is  A=x2 when the area is 150 cm2The side length is x=150=56 cmx=56  ,  dxdt=10A=x2dAdt=2x×dxdt=2×56×10=1006245cm2sArea is increasing at the rate of 245 cm2/s\text{Let x be the side length of the square.}\\[1 em] \therefore \text{ The area of the square is} ~~A=x^{2} \\[1 em] \text{ when the area is} ~150~ \mathrm{cm}^{2}\\[1 em] \therefore \text{The side length is}~x=\sqrt{150} = 5\sqrt{6}~\mathrm{cm} \\[1 em] \therefore x=5\sqrt{6} ~~,~~\frac{d x}{d t}=10\\[1 em] \because A=x^{2} \\[1 em] \begin{aligned} \therefore \frac{d A}{d t}&=2 x \times \frac{d x}{d t} \\[1 em] &=2 \times 5\sqrt{6} \times 10\\[1 em] &=100\sqrt{6}\approx 245 \mathrm{cm}^{2} \mathrm{s} \\[1 em] \end{aligned}\\[1 em] \text{Area is increasing at the rate of}~ 245 ~\mathrm{cm}^{2} / \mathrm{s}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment