Let A=(0,1),B=(1,0),O=(0,0).
Line OA: x=0,0≤y≤1
LineAB: y=−x+1,0≤x≤1
Line OB: y=0,0≤x≤1
Given δ(x,y)=xy
Find the mass of the lamina
m=∬Dδ(x,y)dA=∫01∫01−xxydydx=
=∫01x[2y2]1−x0dx=21∫01(x−2x2+x3)dx=
=[4x2−3x3+8x4]10=241(units of mass) Mass of the lamina is 241 units of mas.
Find the coordinates of the center of mass
xˉ=m1∬Dxδ(x,y)dA=24∫01∫01−xx2ydydx=
=24∫01x2[2y2]1−x0dx=12∫01(x2−2x3+x4)dx=
=12[3x3−42x4+5x5]10=4−6+512=52
yˉ=m1∬Dyδ(x,y)dA=24∫01∫01−xxy2dydx=
=24∫01x[3y3]1−x0dx=8∫01(x−3x2+3x3−x4)dx=
=8[2x2−33x3+43x4−5x5]10=4−8+6−58=52 Center of mass (52,52)
Comments