Question #126224

find the mass and center of mass of the triangular lamina with vertices (0,0), (0,1) and (1,0) and density function  𝛿(x,y)=xy


1
Expert's answer
2020-07-14T18:23:23-0400

Let A=(0,1),B=(1,0),O=(0,0).A=(0,1), B=(1, 0), O=(0,0).

Line OA: x=0,0y1x=0, 0\leq y\leq1

LineAB: y=x+1,0x1y=-x+1, 0\leq x\leq1

Line OB: y=0,0x1y=0, 0\leq x\leq 1



Given δ(x,y)=xy\delta(x,y)=xy

Find the mass of the lamina


m=Dδ(x,y)dA=0101xxydydx=m=\iint_D\delta(x,y)dA=\displaystyle\int_{0}^1\displaystyle\int_{0}^{1-x}xydydx=

=01x[y22]1x0dx=1201(x2x2+x3)dx==\displaystyle\int_{0}^1x\big[{y^2\over 2}\big]\begin{matrix} 1-x \\ 0 \end{matrix}dx={1\over 2}\displaystyle\int_{0}^1(x-2x^2+x^3 )dx=

=[x24x33+x48]10=124(units of mass)=\big[{x^2 \over 4}-{x^3 \over 3}+{x^4 \over 8}\big]\begin{matrix} 1 \\ 0 \end{matrix}={1 \over 24} (units\ of\ mass)

Mass of the lamina is 124\dfrac{1}{24} units of mas.


Find the coordinates of the center of mass


xˉ=1mDxδ(x,y)dA=240101xx2ydydx=\bar{x}={1\over m}\iint_Dx\delta(x,y)dA=24\displaystyle\int_{0}^1\displaystyle\int_{0}^{1-x}x^2ydydx=

=2401x2[y22]1x0dx=1201(x22x3+x4)dx==24\displaystyle\int_{0}^1x^2\big[{y^2\over 2}\big]\begin{matrix} 1-x \\ 0 \end{matrix}dx=12\displaystyle\int_{0}^1(x^2-2x^3+x^4 )dx=

=12[x332x44+x55]10=46+125=25=12\big[{x^3 \over 3}-{2x^4 \over 4}+{x^5 \over 5}\big]\begin{matrix} 1 \\ 0 \end{matrix}=4-6+{12 \over5}={2 \over5}

yˉ=1mDyδ(x,y)dA=240101xxy2dydx=\bar{y}={1\over m}\iint_Dy\delta(x,y)dA=24\displaystyle\int_{0}^1\displaystyle\int_{0}^{1-x}xy^2dydx=

=2401x[y33]1x0dx=801(x3x2+3x3x4)dx==24\displaystyle\int_{0}^1x\big[{y^3\over 3}\big]\begin{matrix} 1-x \\ 0 \end{matrix}dx=8\displaystyle\int_{0}^1(x-3x^2+3x^3-x^4 )dx=

=8[x223x33+3x44x55]10=48+685=25=8\big[{x^2 \over 2}-{3x^3 \over 3}+{3x^4 \over 4}-{x^5 \over 5}\big]\begin{matrix} 1 \\ 0 \end{matrix}=4-8+6-{8 \over5}={2 \over5}

Center of mass (25,25)\big(\dfrac{2}{5},\dfrac{2}{5}\big)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS