find the mass and center of mass of the triangular lamina with vertices (0,0), (0,1) and (1,0) and density function 𝛿(x,y)=xy
Let "A=(0,1), B=(1, 0), O=(0,0)."
Line OA: "x=0, 0\\leq y\\leq1"
LineAB: "y=-x+1, 0\\leq x\\leq1"
Line OB: "y=0, 0\\leq x\\leq 1"
Given "\\delta(x,y)=xy"
Find the mass of the lamina
"=\\displaystyle\\int_{0}^1x\\big[{y^2\\over 2}\\big]\\begin{matrix}\n 1-x \\\\\n 0 \n\\end{matrix}dx={1\\over 2}\\displaystyle\\int_{0}^1(x-2x^2+x^3 )dx="
"=\\big[{x^2 \\over 4}-{x^3 \\over 3}+{x^4 \\over 8}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}={1 \\over 24} (units\\ of\\ mass)"
Mass of the lamina is "\\dfrac{1}{24}" units of mas.
Find the coordinates of the center of mass
"=24\\displaystyle\\int_{0}^1x^2\\big[{y^2\\over 2}\\big]\\begin{matrix}\n 1-x \\\\\n 0 \n\\end{matrix}dx=12\\displaystyle\\int_{0}^1(x^2-2x^3+x^4 )dx="
"=12\\big[{x^3 \\over 3}-{2x^4 \\over 4}+{x^5 \\over 5}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=4-6+{12 \\over5}={2 \\over5}"
"\\bar{y}={1\\over m}\\iint_Dy\\delta(x,y)dA=24\\displaystyle\\int_{0}^1\\displaystyle\\int_{0}^{1-x}xy^2dydx="
"=24\\displaystyle\\int_{0}^1x\\big[{y^3\\over 3}\\big]\\begin{matrix}\n 1-x \\\\\n 0 \n\\end{matrix}dx=8\\displaystyle\\int_{0}^1(x-3x^2+3x^3-x^4 )dx="
"=8\\big[{x^2 \\over 2}-{3x^3 \\over 3}+{3x^4 \\over 4}-{x^5 \\over 5}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=4-8+6-{8 \\over5}={2 \\over5}"
Center of mass "\\big(\\dfrac{2}{5},\\dfrac{2}{5}\\big)"
Comments
Leave a comment