Equation of tangent line is:
"y-y_0=f'(x_0)(x-x_0)"
We have:
"f'(x_0)=-1\/3"
Then:
"f'(x)=\\frac{x-1-x-1}{(x-1)^2}=-\\frac{2}{(x-1)^2}"
"-\\frac{2}{(x_0-1)^2}=-1\/3"
"(x_0-1)^2=6"
"x_0=\\sqrt{6}+1" or "x_0=-\\sqrt{6}-1"
"y_0=\\frac{\\sqrt{6}+2}{\\sqrt{6}}" or "y_0=\\frac{\\sqrt{6}}{\\sqrt{6}+2}"
So, equations of tangent lines:
"y-\\frac{\\sqrt{6}+2}{\\sqrt{6}}=-\\frac{1}{3}(x-\\sqrt{6}-1)"
or
"y-\\frac{\\sqrt{6}}{\\sqrt{6}+2}=-\\frac{1}{3}(x+\\sqrt{6}+1)"
Equation of normal line is:
"y-y_0=-\\frac{1}{f'(x_0)}(x-x_0)"
So:
"y-\\frac{\\sqrt{6}+2}{\\sqrt{6}}=3(x-\\sqrt{6}-1)"
or
"y-\\frac{\\sqrt{6}}{\\sqrt{6}+2}=3(x+\\sqrt{6}+1)"
Comments
Leave a comment