Question #125669
Find the points on the graph of the function f(x)=x+1/x-1 where the slope of the tangent line is equal to -1/3 Determine the equations of the tangent and normal line.
1
Expert's answer
2020-07-08T17:53:25-0400

Equation of tangent line is:

yy0=f(x0)(xx0)y-y_0=f'(x_0)(x-x_0)

We have:

f(x0)=1/3f'(x_0)=-1/3

Then:

f(x)=x1x1(x1)2=2(x1)2f'(x)=\frac{x-1-x-1}{(x-1)^2}=-\frac{2}{(x-1)^2}

2(x01)2=1/3-\frac{2}{(x_0-1)^2}=-1/3

(x01)2=6(x_0-1)^2=6

x0=6+1x_0=\sqrt{6}+1 or x0=61x_0=-\sqrt{6}-1

y0=6+26y_0=\frac{\sqrt{6}+2}{\sqrt{6}} or y0=66+2y_0=\frac{\sqrt{6}}{\sqrt{6}+2}

So, equations of tangent lines:

y6+26=13(x61)y-\frac{\sqrt{6}+2}{\sqrt{6}}=-\frac{1}{3}(x-\sqrt{6}-1)

or

y66+2=13(x+6+1)y-\frac{\sqrt{6}}{\sqrt{6}+2}=-\frac{1}{3}(x+\sqrt{6}+1)


Equation of normal line is:

yy0=1f(x0)(xx0)y-y_0=-\frac{1}{f'(x_0)}(x-x_0)

So:

y6+26=3(x61)y-\frac{\sqrt{6}+2}{\sqrt{6}}=3(x-\sqrt{6}-1)

or

y66+2=3(x+6+1)y-\frac{\sqrt{6}}{\sqrt{6}+2}=3(x+\sqrt{6}+1)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS