"\\vec F=(xy+3z)\\vec i +(2y^2-x^2)\\vec j+(z-2y)\\vec k"
Curve "C": "x^2=2y, 2x^3=3z" from "x=0" to "x=1"
This curve is given by vector function "r(t)=t\\vec i +\\frac{ t^2}2 \\vec j +\\frac{2t^3}{3}\\vec k, \\ \\ 0\\leq t\\leq 1"
"r^{\\prime}(t)=\\vec i +t\\vec{j}+2t^2\\vec k"
"\\vec F(r(t))=\\frac{5t^3}{2}\\vec i +\\left( \\frac{t^4}{2}-t^2 \\right)\\vec j+\\left (\\frac{2t^3}{3}-t^2\\right)\\vec k"
Work done by the force "\\vec F" along curve "C" is
"W=\\int _C\\vec F d\\vec r=\\int_0^1 \\vec F(r(t))r^{\\prime}(t) dt=\\int_0^1 \\left(\\frac{5t^3}{2}+\\frac{t^5}{2}-t^3+\\frac{4t^5}{3}-2t^4 \\right)dt=\\int _0^1 \\left( \\frac{11t^5}{6}+\\frac{3t^3}{2}-2t^4\\right)dt=\\frac{11t^6}{36}+\\frac{3t^4}{8}-\\frac{2t^5}{5}\\bigg|_0^1= \\frac{11}{36}+\\frac{3}{8}-\\frac{2}{5}=\\frac{101}{360}."
Answer: "W=\\frac{101}{360}."
Comments
Leave a comment