Answer to Question #125195 in Calculus for Sunil

Question #125195
Determine the work done by a force
F=(xy+3z)i(cap) + (2y^2-x^2)j(cap) + (z-2y) k(cap) in taking a particle from x=0 to x=1 along a curve defined by equation

x^2=2y ; 2x^3=3z
1
Expert's answer
2020-07-06T18:50:56-0400

F=(xy+3z)i+(2y2x2)j+(z2y)k\vec F=(xy+3z)\vec i +(2y^2-x^2)\vec j+(z-2y)\vec k

Curve CC: x2=2y,2x3=3zx^2=2y, 2x^3=3z from x=0x=0 to x=1x=1


This curve is given by vector function r(t)=ti+t22j+2t33k,  0t1r(t)=t\vec i +\frac{ t^2}2 \vec j +\frac{2t^3}{3}\vec k, \ \ 0\leq t\leq 1

r(t)=i+tj+2t2kr^{\prime}(t)=\vec i +t\vec{j}+2t^2\vec k

F(r(t))=5t32i+(t42t2)j+(2t33t2)k\vec F(r(t))=\frac{5t^3}{2}\vec i +\left( \frac{t^4}{2}-t^2 \right)\vec j+\left (\frac{2t^3}{3}-t^2\right)\vec k

Work done by the force F\vec F along curve CC is

W=CFdr=01F(r(t))r(t)dt=01(5t32+t52t3+4t532t4)dt=01(11t56+3t322t4)dt=11t636+3t482t5501=1136+3825=101360.W=\int _C\vec F d\vec r=\int_0^1 \vec F(r(t))r^{\prime}(t) dt=\int_0^1 \left(\frac{5t^3}{2}+\frac{t^5}{2}-t^3+\frac{4t^5}{3}-2t^4 \right)dt=\int _0^1 \left( \frac{11t^5}{6}+\frac{3t^3}{2}-2t^4\right)dt=\frac{11t^6}{36}+\frac{3t^4}{8}-\frac{2t^5}{5}\bigg|_0^1= \frac{11}{36}+\frac{3}{8}-\frac{2}{5}=\frac{101}{360}.


Answer: W=101360.W=\frac{101}{360}.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment